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Introduction

Over the past twenty years, the empirical applications of matching models with

market-clearing transfers have expanded dramatically. This growth has been driven

by methodological advancements that elucidated the sources of identification in these

models and proposed manageable specifications. This chapter will present these

methodological developments, discuss their limitations, and highlight some of the

key applications.

The Costs and Benefits of TU

Most of this chapter focuses on “perfectly transferable utility”, which, like most of

the literature, I will simply refer to as “TU”. (Perfect) TU is a very demanding

assumption: it requires that the partners in any given match be able to transfer

utility freely to each other, without limits, and without loss or friction. TU implies

the existence of a numéraire good that has the same, constant marginal value for all

partners. Taken literally, it precludes many things that do matter in the real world:

differing marginal utilities, frictions in exchange, and taxes on transfers among others.

As such, it is not appropriate in all applications. The reader should turn to chapter 7

∗Draft chapter for volume 1 of the Handbook of the Economics of Matching.
†Department of Economics, Columbia University, bsalanie@columbia.edu. I am grateful to

Aloysius Siow and to Sean Elliott for their very useful comments on a first draft.
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of this Handbook volume for the analysis of matching when the limitations on transfers

cannot be neglected.

When TU is an acceptable assumption, however, it is a remarkably useful one in

applications. Chapter 5 showed that given TU, the utility possibility frontier within

a match is an entire hyperplane on which the sum of the utilities of the partners add

up to a constant: the joint surplus. The fact that the frontier is a linear subspace

greatly simplifies the properties of stable matchings, as compared with NTU. Whereas

in NTU models the set of stable matchings is a lattice whose cardinality may grow

exponentially with the number of agents, it is (generically) a singleton with TU. More

importantly for the purpose of this chapter, TU opens the way to simple and powerful

inference methods.

Since TU models presuppose the existence of a utility scale that is common to all

agents, welfare analysis is also much more straightforward than under NTU. Once

such a model is estimated, the analyst can put numbers on the trade offs that agents

face in choosing partners with various characteristics, and also evaluate the effect of

policy counterfactuals on the welfare of the various types of agents.

Consider the marriage market as an illustration. Becker’s (1973, 1974)’s classic

analysis made it the first major application of TU models in economics; I will use it as

a running thread in this chapter. We could approach it with a tightly specified theory

of individual preferences in and out of marriage; or we could try to recover preferences

over a set of observable characteristics such as age, education, etc. Macroeconomists

tend to favor the first approach. Given my own background, I will focus on the latter.

How do different subgroups of women value the characteristics of potential partners?

have more educated agents become keener on highly educated partners? how does

the legal framework on divorce or income taxation affect the matching patterns and

welfare of different groups? what of immigration? these are all topics that have been

explored in empirical applications.

Taking the Theory to the Data

Becker assumed that all members of a household sought to maximize their share of a

composite good which he called “household production”, and which we now call the

joint surplus. Suppose that the joint surplus only depends on a single characteris-
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tic of the partners (call it education), and educations are complementary inputs in

household production. As explained in Chapter 5, Becker showed that under these

conditions, any allocation in the core of the marriage market game must display

positive assortative matching.

Under pure positive assortative matching (hereafter PAM), marriage patterns are

strikingly simple: if we order men and women on two vertical axes by education,

matches can be made sequentially by matching the highest education man left with

the highest education woman left (unless one of the two would prefer to remain single).

If any man “marries up” (that is, marries a woman of a higher education level), then

no man with the same education level will “marry down”1. This is illustrated in

Table 1 with four ordered levels of education: any non-zero entry off the diagonal is

reflected in a symmetric zero entry.

Women

Men Education 1 Education 2 Education 3 Education 4

Education 1 µ11 0 µ13 0

Education 2 µ21 µ22 0 µ24

Education 3 0 0 µ33 µ34

Education 4 µ41 0 0 µ44

Table 1: Numbers of matches between men and women

While the data consistently show that education levels are positively correlated

within couples, matching patterns rarely look like Table 1. Cells may be empty

because a sample is small, but they are typically nonzero in the population. There

are at least two ways to reconcile the theory and the observations. One is to appeal to

frictions. If it takes time and effort to find a mate, it is optimal to stop searching once

a “good enough” partner is found. Given random meetings, this acceptable partner

may be well educated or not.

An alternative is to recognize that individuals differ in their preferences in ways

that the analyst cannot observe. College graduates tend to prefer to match with

college graduates, but they differ in the intensity of this educational preference. A

1This statement also applies after interchanging “down” and “up”, or “man” with “woman”.
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college graduate whose educational preference is moderate may end up in a match

with a high-school graduate who likes college graduates, and compensate by getting a

larger share of the joint surplus. Preferences may also differ along other lines: religion,

physical characteristics etc, which are unlikely to be all recorded in our datasets.

These two ways of explaining the observed matching patterns are obviously com-

patible, and in fact complementary. This chapter will emphasize unobserved hetero-

geneity; Chapter 11 has much more to say on matching with frictions.

Identifying the Parameters

Let us return to the example that underlies Table 1, where education is the only

payoff-relevant observed characteristics. Suppose that we only observe the µxy num-

bers for all pairs of education levels x, y P t1, 2, 3, 4u. To further simplify inference,

let these numbers be known for the population, rather than a random sample. If this

is all the information we have—so that transfers are not observed, as is typical with

data on marriages—then we can only recover at most 16 parameters of the distribu-

tion of the joint surplus. This clearly restricts how unobserved heterogeneity can be

introduced in the joint surplus. It should not come as a surprise; we are dealing with

a two-sided discrete-choice problem, and we know that even the one-sided version can

only be identified under restrictive assumptions2.

Following on the pioneering contribution of Choo and Siow (2006), much of the

literature has adopted a “separability” assumption that rules out interactions between

the unobservables. Galichon and Salanié (2022) showed that in separable models,

without further information the joint surplus is just identified once a distribution of

the observables is specified. They also proposed inference procedures that build on

their identification results, as well as a fast computational device to solve for the

stable matching.

To put it differently, if all one observes is “who matches with whom” then even

under separability there are very many ways to rationalize the data, and no way to

2Existing identification results for the discret choice model specify the distribution of the unob-

servables tightly, resort to a special regressor, or combine these two approaches; see e.g. Lewbel

(2000) and Matzkin (2007).
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test the theory3. As always, one must add more assumptions and/or more data to

refine inference; Section 4 illustrates it on some applications.

Roadmap

Section 1 sets up the one-to-one bipartite discrete model; it introduces the crucial

separability property and shows how separable models can be identified. Section 2

explains how to solve for equilibrium and to estimate the parameters of separable

models; and in Section 3 i discuss extensions. I present some applications in Section 4.

Section 5 looks at attempts to go beyond separability. Finally, I briefly discuss models

with frictions in Section 6.

In the following, a matching consists of a list of matches: who ends up partnered

with whom, and/or remains single. I use the term matching patterns to refer to

the observed data: we may for instance only observe how many college-educated

women marry a man with only a high-school degree, but not their income. Tildes

on notation generally denote that the corresponding variable depends on unobserved

heterogeneity. The subscript 0 for a match denotes that the individual is single. I

denote |S| the number of elements of a finite set S. I write m P x for “m belongs to

group x”. Finally, I use bold symbols to denote vectors or matrices, and I use the

dot notation: Zx¨ is row x and Z¨y is column y of the matrix Z.

I have developed a Python package called cupid matching that solves and es-

timates separable models of matching with perfect transferable utility. It is freely

available on the usual repositories4.

1 Separable Models

Becker’s (traditional) marriage market remains the simplest framework to study

matching with perfectly transferable utility. In the jargon of the field, it is one-

to-one: each individual has at most one partner. It is also bipartite: the two partners

in a match belong to separate populations. As these two features simplify the analysis

3The model without unobserved heterogeneity is the one exception, as Table 1 shows.
4See Salanié (2023).
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and the notation, I will start with this model.

1.1 The One-to-One Bipartite Model

The population consists of men m P M and women w P W . Each man m has a

full type x̃m that is perfectly observed by all women; on the other hand, the analyst

only observes that x̃m belongs to a group xm. As an example, xm could be the

education level and x̃m could be the pair formed by the education level and the

religion. Similarly, each woman w has a full type ỹw which all men observe, but the

analyst only observes her group yw.

Note that the unobserved characteristics could be discrete or continuous, and

multidimensional; they could also be much more complex, for instance a whole profile

of preferences over partners. The full type needs to include all characteristics that

are payoff-relevant in the sense that they contribute to the joint surplus in a couple.

If for instance the joint surplus is higher when partners have similar political beliefs,

then the full types should include them. The assumption that each individual can

observe the full type of all of his/her potential partners is obviously very strong. The

literature has not yet found a way to deal with private information in a manner that

is tractable enough for empirical studies.

In many datasets, the characteristics of the partners that are known at the time

of marriage are discrete-valued, as in the case of education and other demograph-

ics. Income may be recorded as continuous, when available; but since it is typically

measured at the time of the survey rather than when the match is formed, it is less

directly useful. Sometimes the data contains information on physical characteristics

or personality scores, which are (somewhat) persistent over time. These should be

treated as continuous. For now we assume that there are a finite number of groups

(x P X and y P Y ); we will deal with continuous groups in Section 3.5.

We summarize this in Assumption 1.

Assumption 1 (The Bipartite Discrete Model). The population consists of men

m P M and women w P W . A man m (resp. a woman w) has an observed type

xm P X (resp. yw P Y ) and a full type x̃m (resp. ỹw). There are nx men in group x and

my women in group y. We will collect these group numbers in a vector q “ pn,mq.
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A match between a man m and w generates a joint utility Φ̃mw. Single men (resp.

women) have utilities Φ̃m0 and Φ̃0w.

We denote X0 “ X Y t0u and Y0 “ Y Y t0u.

1.2 The Stable Matchings

Now consider a hypothetical match between man m and woman w. With perfectly

transferable utility, the utility levels that they can achieve within this couple must

add up to the joint utility Φ̃mw. We impose that any observed matching be stable. In

this context, this means (see Chapter 5) that if we denote ũm and ṽw the utility levels

that any man m and any woman w obtain at an observed matching, the following

inequalities hold:

ũm ě Φ̃m0 for all m

ṽw ě Φ̃0w for all w

ũm ` ṽw ě Φ̃mw for all pm,wq.

The first set of inequalities imposes that a man cannot be left with a lower level of

utility than he would get on his own. The second set of inequalities is the equivalent

statement for women. Finally, the last line states that the sum of the utilities of a

man m and woman w cannot be lower than the joint utility they would obtain by

matching together. We call these |M | ` |W | ` |M | ˆ |W | inequalities the stability

constraints.

As explained in Chapter 5, the utilities attained at a stable matching minimize

the sum of joint utilities
ÿ

mPM

ũm `
ÿ

wPW

ṽw (1)

under the stability constraints. Moreover, the Lagrange multipliers of the stability

constraints at the minimum µ̃m0 ě 0, µ̃0w ě 0, and µ̃mw ě 0 can be interpreted as

a random matching, with µ̃m0 (resp. µ̃0w) representing the probability that man m

(resp. woman w) is single and µ̃mw the probability that they form a match. This

random matching maximizes the sum of joint utilities

ÿ

mw

µ̃mwΦ̃mw `
ÿ

m

µ̃m0Φ̃m0 `
ÿ

w

µ̃0wΦ̃0w (2)
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under the feasibility constraints

ÿ

w

µ̃mw ` µ̃m0 “ 1 for all m

ÿ

m

µ̃mw ` µ̃0w “ 1 for all w.

The multipliers ũm and ṽw of these two sets of constraints in turn solve the prob-

lem (1). This makes programs (1) and (2) dual versions of each other. The for-

mer is usually called the dual and the latter the primal. The dual has much fewer

variables than the primal (|M | ` |W | rather than |M | ` |W | ` |M | ˆ |W |); on the

other hand, the primal has much fewer constraints (again, |M | ` |W | rather than

|M | ` |W | ` |M | ˆ |W |). These are important considerations when choosing which

one to solve.

It is easy to see that the feasible sets of these two programs are non-empty. Since

both programs are linear (with a linear objective function and linear constraints),

the structure of their solution sets is quite simple. There is always a solution to the

primal program (2) for which the matching probabilities are degenerate, in that they

all equal 0 or 1. Generically, this is the unique solution. On the other hand, the

utilities ũ and ṽ cannot be uniquely determined: unless all men and women remain

single, it is always possible to slightly perturb the sharing of joint utilities within

couples without breaking the stability constraints.

1.3 The Data

I will always assume on this chapter that the analyst has data on “who matches

whom”. Since full types have an unobserved component, this data can only record

matches by groups. A typical dataset will be sampled at the household levels. A

household h “ 1, . . . , H may consist of a single man of group xh, a single woman of

group yh, or a married couple pxh, yhq. We denote

µ̂xy “

H
ÿ

h“1

11pxh “ x, yh “ yq

the number of observed matches between a man of group x and a woman of group y.

Sometimes only data on observed pairs are available; unless specified otherwise, we
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will assume that the analyst also observes the numbers of singles µ̂x0 and µ̂0y. The

numbers of men of group x (resp. women of group y) then are estimated by

n̂x “
ÿ

yPY

µ̂xy ` µ̂x0

m̂y “
ÿ

xPX

µ̂xy ` µ̂0y.

The variance-covariance matrix of these estimators obtains easily. For instance,

xcovpµ̂xy, µ̂ztq “ µ̂xy

ˆ

11px “ zq11py “ tq ´
µ̂zt

H

˙

.

These formulæ must be corrected if sampling weights are used.

Some datasets contain additional information: the salary paid by a firm to an

employee, number of children in a marriage, etc. In Section 4, we will briefly discuss

the case when data on transfers or other measurements is available.

1.4 Separability

In principle, given a specification of the joint utilities and the utilities when single

Φ̃, it is possible to estimate the model using a brute-force approach. Suppose that

we parameterize Φ̃mw “ F pxm, yw, ξmw;θq, where F is a known function, θ is a vec-

tor of unknown parameters, and ξmw has a distribution whose unknown parameters,

if any, are subsumed in θ. For each value of θ, one could solve either the primal

or the dual program to obtain the matching probabilities µ̃pxm, yw; ξ,θq, and then

take their expectations over the matrix of random terms ξ to obtain matching pat-

terns µpxm, yw;θq. All that is left is to choose θ to minimize a distance between

these matching patterns and the observed matching patterns µ̂pxm, ywq. Taking the

Kullback-Leibler distance, for instance, would give the maximum-likelihood estima-

tor.

This approach has three drawbacks. First, it can be very costly if the sets of

potential partners are large; it requires solving for the equilibrium many times, and

approximating high-dimensional integrals. Second, it gives very little insight on the

source of identification of the parameters θ. Third, how are we to specify the dis-

tribution of the random matrix ξ? The unobserved components of the full types of
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man m and woman w may a priori interact in complicated ways with the observed

components and with each other. As we have known since Becker (1973) that in-

teractions between characteristics drive matching patterns, this raises concerns that

specification details may play a very large role.

For all of these reasons, most of the literature has adopted the separability as-

sumption implicit in Choo and Siow (2006) and defined in Chiappori, Salanié, and

Weiss (2017). This states that conditionally on the groups of the partners, full types

do not interact in generating joint surplus. As an illustration, remember the example

in the introduction where education is observed by the analyst and religion is not.

Separability allows the education levels to affect the joint utility freely; it does not

restrict the interaction between the education of the husband and the religion of the

wife, or between the education of the husband and the religion of the wife; but it rules

out any interaction between the religion of the two partners. It would clearly not be

a credible assumption in societies where religious identities are very strong. On the

other hand, it may be more appropriate in more secular settings. This example also

shows that the separability assumption is less strong when the data contains more rel-

evant covariates. Moreover, exploratory simulations reported in Chiappori, Nguyen,

and Salanié (2019) suggest that fitting a separable model to a data-generating process

that is moderately non-separable only creates small biases.

Assumption 2 states separability more formally. Part (i) is the crucial element, as

discussed above. Equation (3) looks like an analysis-of-variance decomposition with

a “missing” residual—the interaction that we ruled out. Part (vi) is a weak technical

restriction.

Assumption 2 (Separability). There exist a p|X|, |Y |q matrix Φ and random terms

ε and η such that

(i) the joint utility from a match between a man m of group x P X and a woman

w of group y P Y is

Φ̃mw “ Φxy ` εmy ` ηxw. (3)

We call the matrix Φ the joint surplus5.

5I follow the literature here. Strictly speaking, the joint surplus is Φ̃mw ´ Φ̃m0 ´ Φ̃0w; Φxy only

measures the part of the joint utility from a match that comes from the observed characacteristics

of the partners.
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(ii) the utility of a single man m is Φ̃m0 “ εm0,

(iii) the utility of a single woman w is Φ̃0w “ η0w,

(iv) conditional on m P x, the random vectors εm “ pεmyqyPY0 are independent across

m; they have probability distribution Px,

(v) conditional on w P y, the random vectors ηw “ pηxwqxPX0 are independent across

w; they have probability distribution Qy,

(vi) the random variables

max
yPY0

|εmy| and max
xPX0

|ηxw|

have finite expectations under Px and Qy respectively.

Note that Assumption 2 does not allocate the ε and η terms to either side of

the market. One could interpret ηxw, for instance, as an idiosyncratic preference of

woman w for men of group x, as a good fit between them in household production, as

a common attraction of men in group x for woman w, or any combination of these and

other motives. Since the model primitives are the joint utilities, these distinctions do

not affect the solution.

Imposing the separability assumption will allow us to get transparent identifying

equations that lead directly to simple estimation procedures. To see this, start from

the problem facing a man m in group x. He could either stay single and obtain utility

εm0, or match with a woman w and share the joint utility Φ̃mw with her. Let ṽw

denote the utility that woman w expects at a stable matching, so that man m can

only obtain Φ̃mw ´ ṽw for himself in their match. To select his best option, this man

will solve

max
´

εm0,max
w

´

Φ̃mw ´ ṽw

¯¯

;

the value of this program represents the utility ũm he can expect at a stable matching.

Using Assumption 2.(i), we rewrite

ũm “ max

ˆ

εm0,max
yPY

max
wPy

pΦxy ` εmy ` ηxw ´ ṽwq

˙

“ max

ˆ

εm0,max
yPY

ˆ

Φxy ` εmy `max
wPy

pηxw ´ ṽwq

˙˙

.
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Now define Vxy “ minwPypṽw ´ ηxwq. We obtain

ũm “ max

ˆ

εm0,max
yPY

pΦxy ´ Vxy ` εmyq

˙

“ max
yPY0

pΦxy ´ Vxy ` εmyq , (4)

with the convention that Φx0 “ Vx0 “ 0. The interpretation is that man m will choose

to match with a woman whose group y attains the maximum in (4) (or remain single

if the maximum is attained at y “ 0.)

For a woman w in group y, we get in the same way

ṽw “ max
xPX0

pΦxy ´ Uxy ` ηxwq (5)

with Uxy “ minmPxpũm ´ εmyq and Φ0y “ U0y “ 0.

The third part of the stability constraints implies that for any man m P x and

woman w P y,

pũm ´ εmyq ` pṽw ´ ηxwq ě Φxy;

taking the minimum over m P x and w P y gives Uxy ` Vxy ě Φxy. If m and w do

match at the stable matching, the utility possibility frontier ũm ` ṽw “ Φ̃mw gives

Uxy ` Vxy “ Φxy.

To summarize:

Theorem 1 (Discrete Choice Representation). Normalize utilities by Φx0 “ Ux0 “

V0y “ Φ0y “ 0 for all x P X and y P Y .

(i) There exist two p|X|, |Y |q matrices of numbers U and V such that a man m P x

(resp. a woman w P y) remains single or marries a woman of group y (resp. a

man of group x), depending on the maximizer in (4) (resp. in (5)).

(ii) Vxy ě Φxy ´ Uxy for any pair px, yq of groups.

(iii) Moreover, Vxy “ Φxy ´ Uxy for any pair of groups such that µxy ą 0.

It is clear from (4) and (5) that separability implies some form of indifference: if

woman w P y opts for a match with a man of group x, then the unobserved character-

istics of this man do not matter to her. Separability does allow for a restricted form of
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“matching on unobservables”, however: at a stable matching, such a woman is more

likely to marry man m P x than man m1 P x if man m has a stronger preference for

women in group y—that is, εmy ą εm1y. To return to the education/religion example:

if a religious woman marries an educated man at the stable matching, his religious

beliefs do not affect her utility—but part of the reason is that this man will have a

preference for religious wives.

Choo and Siow (2006) called the numbers Uxy and Vxy “systematic net gains”.

This is somewhat misleading as they do not represent the utility of any individual

(or an average utility) in a stable matching; they are only useful notation. I will call

them “systematic values” in what follows. On the other hand, the numbers ũm and

ṽw are utility values.

1.5 Identification

Our objective here is to identify the joint surplus Φ and the distributions of the

utilities ũ and ṽ from an observed matching µ̂, given (for now) assumed distributions

Px and Qy. Galichon and Salanié (2022) developed a series of results that achieve

this goal.

Theorem 1 shows that separability reduces the dimensionality of the problem from

|M | ` |W | (the utilities of all individuals at the stable matching) to the |X| ˆ |Y |
values of the Uxy. This is typically a much smaller number. Moreover, Theorem 1

will allow us to turn the linear programming program (2) into a differentiable, strictly

convex minimization problem and to use convex duality to identify the parameters of

the joint surplus.

To see this, let U be the matrix in Theorem 1, with Ux0 “ 0 for all groups x.

Then the average value function of men in group x can be defined as

G̃xpUx¨q “
1

nx

ÿ

mPx

max
yPY0

pUxy ` εmyq.

Since it is the average of the maximum of a set of functions that are linear in the Uxy,

it is a convex function. To simplify the exposition, I focus here in the “large market

limit”6.

6I describe the finite market version in Appendix B.
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Assumption 3 (Large Market Limit). The population contains a continuum of in-

dividuals of each group. The notations nx and my now refer to the masses of the

groups.

Moreover, the distributions Px (resp. Qy) are atomless and have full support on

R|Y |`1 (resp. R|X|`1).

In this large market limit, the average value becomes an expected value:

GxpUx¨q “ EPx max
yPY0

pUxy ` εmyq

and the function Gx is differentiable and strictly convex. A simple application of the

envelope theorem shows that its partial derivatives

µM
y|x ”

BGx

BUxy

pUx¨q (6)

equal the choice probabilities for men of group x. This result7 is of great interest for

us, since these choice probabilities are simply the ratios of the matching patterns to

the masses of the groups: µM
y|x “ µxy{nx. Even more importantly, this relationship

can be inverted to express the unknown systematic values pUxyq as a function of the

observed matching patterns pµxyq. This inversion relies on convex duality; Appendix A

gives the results from convex analysis that we need here.

Given a set of non-negative numbers µM
¨|x ” pµ

M
y|xqyPY whose sum does not exceed

one, we define the Legendre-Fenchel transform of the function Gx by

G˚xpµ
M
¨|xq “ max

Ux0“0,Ux1,...,Ux,|Y |

˜

ÿ

yPY

µM
y|xUxy ´GxpUx¨q

¸

;

we assign it the value `8 if
ř

yPY µ
M
y|x ą 1 (which would imply a negative number of

single men in group x). The function G˚x is another maximum of linear functions, so

that it is convex. Given Assumption 3, it is in fact strictly convex and differentiable.

Using the envelope theorem again, its derivatives are

Uxy “
BG˚x
BµM

y|x

pµM
¨|xq. (7)

7It is called the Daly-Williams-Zachary theorem in the discrete choice literature.
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Equations (6) and (7) are dual to each other: the former recovers choice probabilities

µM
¨|x from the systematic values Ux¨ and the latter inverts the process to identify the

systematic utility values from the choice probabilities, which are observed in the data

by simple counting over households h P H:

µ̂M
y|x “

ř

h“pm,wqPH 11pxm “ x, yw “ yq
ř

hPH 11pxm “ xq
.

We can do exactly the same thing with the women’s choice problem; substituting Gx

with Hy and U with V , we identify the systematic values V by

Vxy “
BH˚

y

BµW
x|y

pµW
¨|yq. (8)

This already allows us to evaluate the utility attained by any individual, using The-

orem 1. Moreover, it is easy to see that under Assumption 3, no cell px, yq of the

stable matching can be empty in the population. The last part of Theorem 1 shows

that the matrix Φ is simply the sum of U and V and is therefore identified:

Φxy “
BG˚x
BµM

y|x

pµM
¨|xq `

BH˚
y

BµW
x|y

pµW
¨|yq. (9)

In equilibrium, the choice probabilities of men and women must be consistent:

nxµ
M
y|x “ myµ

W
x|y “ µxy.

This allows us to define the generalized entropy of a matching:

Epµ, qq “ ´
ÿ

xPX

nxG
˚
xpµx¨{nxq ´

ÿ

yPY

myH
˚
y pµ¨y{myq (10)

and to state our identification result as Theorem 2, which is proved more rigorously

in Galichon and Salanié (2022).

Theorem 2 (Identifying the Joint Surplus). Under Assumptions 1, 2, and 3, the

stable matching µ is unique; it solves the following globally convex program:

Wpqq “ max
µ

¨

˚

˝

ÿ

xPX
yPY

µxyΦxy ` Epµ, qq

˛

‹

‚

. (11)
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The solution is characterized by the first-order conditions

Φxy “ ´
BE
Bµxy

pµ, qq. (12)

At the stable matching, a man m P x attains utility

ũm “ max

ˆ

εm0,max
yPY

pUxy ` εmyq

˙

, with Uxy “
BG˚x
BµM

y|x

pµM
¨|xq. (13)

Man m is single if the maximum is achieved by εm0, married to a woman w P y if the

maximum is achieved at y P Y . This woman attains utility

ṽw “ max
´

η0w,max
xPX

pVxy ` ηxwq
¯

, with Vxy “
BH˚

y

BµW
x|y

pµW
¨|yq

and the maximum is attained at x.

The average utility of men of group x (resp. women of group y) ar the stable

matching is ux ” GxpUx¨q (resp. vy ” Hypv¨yqq.

The quantity being maximized in (11) is the total joint utility generated by a

matching µ. The generalized entropy is strictly concave since its components G˚x and

H˚
y are strictly convex; and it is differentiable like them. By construction, its value

is minus infinity if the matching is not feasible: if we had say
ř

yPY µxy ą nx, then

the value of G˚x would be plus infinity. If there were no unobserved heterogeneity, we

would have GxpUx¨q “ maxyPY0 Uxy; it is easy to see that G˚x would be zero for all

feasible matchings. The total joint utility would simply be the sum of the values of

“matching on groups”:
ÿ

xPX
yPY

µxyΦxy.

The generalized entropy adds to it the value of “matching on unobservables”. If men

in group x have choice probabilities µM
¨|x and utility values Ux¨, then by definition

´G˚xpµ
M
y|xq “ GxpUx¨q ´

ÿ

yPY

µM
y|xUxy

which is the difference between the expected utility of men of group x and what they

would get if matching only on groups. Summing over men and women of all groups
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gives

Epµ, qq “

˜

ÿ

xPX

nxGxpUx¨q `
ÿ

yPY

myHypV¨yq

¸

´
ÿ

xPX
yPY

µxyΦxy.

The term between parentheses is the total joint utility generated by the matching; the

term on the second line is the joint utility generated by matching on groups only. The

value of the generalized entropy comes from the fact that men and women select the

group of their partners on the basis of their unobserved heterogeneity terms. If the

ε and η have non-negative means, this contributes a positive term to the total joint

utility. Appendix C gives formulæ for the generalized entropy functions in several

useful models.

1.6 The Limits of Identification

Equation (12) shows that for any choice of the distributions Px and Qy of the unob-

served heterogeneity terms, the joint surplus Φ can be recovered from the derivatives

of the generalized entropy, whose precise form depends on this choice of distributions.

This is of course a major “if”. At the end of the day, the data boils down to |X|ˆ |Y |
numbers: the marriage patterns pµxyq. Therefore we can only hope to point-identify

|X|ˆ |Y | parameters. Some of these parameters can be used to specify the matrix Φ,

and some others for the distributions Px and Qy. As always, there are several ways to

(partially) go around this limitation. Gualdani and Sinha (2023) show how the joint

surplus can be partially identified if shape or symmetry restrictions are imposed on

the distributions of the unobserved heterogeneity. Rather than adding assumptions,

one can also add data, if available. A popular way of doing so is to pool data on

several, isolated matching markets and to restrict the variation in Φ across markets.

We will see examples of this approach in Section 4.

1.7 The Logit Model

To make this concrete, I turn to the pioneering contribution of Choo and Siow (2006).

They proposed a model that has become very popular in applications. It satisfies
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Assumptions 1, 2, and 3. In addition, Choo and Siow chose distributions Px and Qy

that lead to the usual multinomial logit formulae.

Assumption 4 (Multilogit Heterogeneity). For each x (resp. each y), the distribution

Px (resp. Qy) is the centered and standardized Gumbel (type I extreme value) p|Y |`
1q´ (resp. p|X|` 1q-) dimensional distribution.

Given this distributional assumption, the expected value function takes the famil-

iar “logexp” form:

GxpUx¨q “ log

˜

1`
ÿ

yPY

exppUxyq

¸

and it is easy to see that its Legendre-Fenchel transform is

G˚xpµ
M
¨|xq “

ÿ

yPY

µM
y|x log µM

y|x ` µ
M
0|x log µM

0|x

where µM
0|x “ 1 ´

ř

yPY µ
M
y|x is the probability that a man of group x is single. This

is, of course, simply (minus) the entropy of the distribution µM
¨|x. This justifies the

name Galichon and Salanié (2022) chose for the generalized entropy, which is in this

specific model equals

Epµ, qq “ ´2
ÿ

xPX,yPY

µxy log µxy `
ÿ

xPX

nx log nx `
ÿ

yPY

my logmy.

Equation (12) identifies the joint surplus from the very simple Choo and Siow formula:

Φxy “ log
µ2
xy

µx0µ0y

; (14)

the utility attained by man m P x for instance is

ũm “ max
yPY0

ˆ

log
µxy

µx0

` εmy

˙

.

and he matches with a woman in the group y that achieves the maximum (or stays

single if that y is 0). This woman gets utility

ṽw “ max
xPX0

ˆ

log
µxy

µ0y

` ηxw

˙

,

which she attains by choosing group x.

18



In this model, the expected utilities take a very simple form: men of group x get

ux “ ´ log µM
0|x, so that expected utilities are ranked like the probabilities of marriage.

This is a special feature of the multinomial logit: at the stable matching, the expected

utility of a man of group x who is matched with a woman of group y also takes the

value ´ log µM
0|x, no matter what the value of y is8.

1.8 Comparative Statics

Theorem 2 easily yields some useful comparative statics result. I only mention a few

here; the reader may turn to Galichon and Salanié (2017) and Galichon and Salanié

(2022) for more.

First, all separable models exhibit constant returns to scale: if the numbers (or

masses) of men and women in each group are multiplied by the same positive number

k, then the stable matching patterns will be multiplied by k.

Applying the envelope theorem to (11) shows that the derivative of the total

joint utility with respect to the number of men in a given group x is the expected

utility GxpUx¨q of men of group x, as one would expect. More interestingly, the value

W of the total joint utility in program (11) is convex in q, so that its Hessian is

positive definite. The usual restrictions on symmetry and on the positivity of its

minors translate directly into restrictions on the first derivatives of W , which are the

expected utilities of the different groups.

Specific separable models entail their own additional testable predictions. For

instance, Graham (2013) showed that at any stable matching in the Choo and Siow

(2006) model, have

log
µxyµx1y1

µx1yµxy1
“ Φxy ` Φx1y1 ´ Φxy1 ´ Φx1y (15)

for all px, y, x1, y1q.

Therefore changes in Φ that leave the right-hand side unchanged should have zero

effect on the left-hand side.

8In the notation of Section 1.2: Epũm|m P x, µ̃mw ą 0, w P yq “ Epũm|m P x, µ̃m0 ă 1q for all

x and y. de Palma and Kilani (2007) shows (in the one-sided discrete choice model) that this only

obtains with the multinomial logit.
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1.9 Interpreting Matching Patterns

As a useful joint product, using structural models of matching allows us to understand

the limits on ANOVA decompositions of matching patterns. These have often been

used to interpret changes over time, or differences across groups or countries; and to

infer changes in preferences for homogamy.

An ANOVA decomposition is akin to a regression with fixed effects. Say we

observe discrete-valued characteristics x for men and y for women. We could run a

regression of the number µxy of matches observed in each px, yq cell as

µxy “

|X|
ÿ

k“1

bk11px “ xkq `

|Y |
ÿ

l“1

cl11py “ ylq ` ξxy.

By construction, the residual ξxy measures the contribution of the interactions of the

characteristics of the partners to the likelihood that they match. Its interpretation is

far from straightforward, however. Take the logit model as an example. Formula 14

gives

2 log µxy “ log µx0 ` log µ0y ` Φxy.

If we are interested in the causes of changes in matching patterns, that is in changes

in the joint surplus Φ, the Choo and Siow model therefore suggests using an ANOVA

decomposition of the logarithm of the matching patterns (or, as in Graham (2013) and

Chiappori, Salanié, and Weiss (2017), using formula (15)). The more general point

here is that ANOVA regressions cannot be interpreted in the absence of a structural

model that justifies them.

Defining measures of changes in matching patterns is a related, controversial topic.

Consider an apparently simple question: can we conclude from the observed matching

patterns that assortative matching by education has increased in the US in recent

decades? The answer may differ in the bottom and at the top of the range of education

levels; it may also depend on how we group education levels. Suppose that we agree

that there are only two education groups, and on the definitions of these groups. We

could use the correlation between the educations of the partners; the value of a χ2

test of independence; a log-likelihood ratio; or any of several other proposals in this

literature. Even with this 2-by-2 case, they may not give the same answer, and some

of them have counterintuitive properties. Siow (2015), Chiappori, Salanié, and Weiss
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(2017), and Chiappori, Costa-Dias, and Meghir (2020) argue in favor of using the

estimate of the joint utility Φ that results from (14).

2 Computation and Inference in Separable Models

I show here how to solve for the equilibrium and to estimate the model in the one-

to-one, bipartite, discrete model. Section 3 discusses extensions to other classes of

separable models.

2.1 Computing the Stable Matching

For given Φ and q, one could solve the program (11) or the first-order conditions (12)

to compute the stable matching patterns µ. There are much better ways, however.

Galichon and Salanié (2022) proposed a version of the Iterative Projection Fitting

Procedure (IPFP9).

The algorithm is best illustrated on the Choo and Siow (2006) model. Remember

the adding up equation for men of group x:

ÿ

yPY

µxy ` µx0 “ nx.

Denote ax ”
?
µx0 and by ”

?
µ0y. Given (14), this becomes the quadratic equation

a2x ` ax
ÿ

yPY

by exppΦxy{2q “ nx.

Start from an initial value bp0q. for the vector of by values. We can easily solve for

ax; in fact, we can do it in parallel for all values of x and get a vector ap1q such that

pap1q, bp0qq and the implied matching patterns µ
p1q
xy “ a

p1q
x b

p0q
y exppΦxy{2q are feasible on

the men’s side (but not the women’s). Using the adding up equations on the women’s

side:

b2y ` by
ÿ

xPX

ap1qx exppΦxy{2q “ my,

we solve for a new vector bp2q and we now get feasibility on the women’s side, but not

on the men’s side.
9This is also known as Sinkhorn’s algorithm or RAS matrix completion in different contexts.
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Galichon and Salanié (2022) show that this iterative process converges globally

towards the stable matching. In practice, convergence is very fast. The algorithm can

be seen as a tâtonnement on the “prices” ax and by for the “goods” represented by the

groups of men and women, with the particular feature that each iteration clears |X| or

|Y | markets. It can be extended to all separable models, but each individual iteration

may be more complicated than in the logit model10. Solvers for heteroskedastic or

nested logit models are available in my cupid matching Python package.

2.2 Estimating Separable Models

Some simple separable models can be estimated non-parametrically. This was the

approach used by Choo and Siow (2006). They grouped individuals by age only

and they applied equation (14). The limits of this method are obvious: the curse

of dimensionality hits quickly since observable characteristics on both sides interact;

and one may also want to allow for more flexible specifications than the underlying

(parameter-free) multinomial logit.

A parametric model needs to specify the distributions of the unobserved hetero-

geneity (Px and Qy) and the joint utility Φ. Let us denote α and β the corresponding

vectors of parameters. Our goal is to recover estimates of λ “ pα,βq.

2.2.1 Maximum Likelihood Estimation

Suppose that we have a way of computing the stable matching patterns µλ for any pa-

rameter vector λ, with IPFP for instance. Given a sample of households as described

in Section 1.3, the log-likelihood function is11

H
ÿ

h“1

log pλh

where pλh is the probability that household h is of the observed type, given a model

with parameters λ. This is easily computed from the stable matching. The only

10See Galichon and Salanié (2022) for details.
11Technically, it is the log-likelihood function conditional on the observed group numbers (the n̂x

and m̂y, which are used to compute the stable matching).
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thing to note is that the number of households at the stable matching depends on

the number of marriages, which varies with λ. Denoting it by Nλ, we obtain

• pλh “ µλx0{N
λ if household h is a single man of group x

• if it is a single woman of group y, then pλh “ µλ0y{N
λ

• if it is a married couple with groups x and y, then pλh “ µλxy{N
λ.

Maximizing the log-likelihood function gives as usual consistent, asymptotically nor-

mal, and asymptotically efficient estimates12. It has two drawbacks. First, it requires

evaluating the stable matching patterns µλ for many values of λ. Second, it relies on

numerical optimization of a function that may have a complicated shape.

I now turn to two alternative estimation methods that are coded in my cupid matching

package.

2.2.2 Minimum Distance Estimation

It seems natural to start from the identifying equation (12):

Φβ0 `
BEα0

Bµ
pµ, qq “ 0,

where we made explicit the dependence of the Φ matrix on β0 and that of the gen-

eralized entropy E on α0 (via the distributions Px and Qy). This can be seem as a

mixed hypothesis:

Dλ0 “ pα0,β0q, D
λ0pµ, qq ” Φβ0 `

BEα0

Bµ
pµ, qq “ 0,

where we stacked all X ˆ Y conditions in (12) in a vector Dλ0 . Our assumptions

imply that this hypothesis holds in the population. Since we have consistent estimates

of both q and µ, we can plug them in13 and fit the equations

Dλ0pµ̂, q̂q ” Φβ
`
BEα

Bµ
pµ̂, q̂q “ 0

12Note that Nλ is a real number not an integer, as it is the sum of the numbers of simulated

couples and of simulated singles, which are themselves real numbers.
13Recall that since all separable matching models exhibit constant returns to scale, the derivatives

of the generalized entropy are homogeneous of degree 0 in pµ, qq. This implies that the mixed

hypothesis is scale-invariant.
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to obtain estimators of α and β. This minimum distance estimator is consistent and

asymptotically normal.

In practice, we can both test our mixed hypothesis and estimate λ0 by minimizing

‖Dλpµ̂, q̂q‖2S for some positive definite p|X| ˆ |Y |, |X| ˆ |Y |q matrix S. By the

general theory of minimum distance estimators, we know that this yields a consistent

estimator of λ if the model is well-specified and λ0 is point-identified. Moreover,

if we choose S “ Ω̂´1 where Ω̂ consistently estimates the asymptotic variance of

Dλ0pµ̂, qq, the minimum distance estimator will reach its efficiency bound14. Finally,

under this choice of S the minimized value of the squared norm follows a χ2 under

the mixed hypothesis15. This gives us a straightforward specification test.

A major attraction of the minimum distance estimator is that it does not require

solving for the stable matching patterns for even one value of the parameters: it only

relies on the observed matching patterns. The objective function to be minimized

may still be complicated, however. Things simplify dramatically if the parameters β

enter the joint surplus Φ linearly and the derivatives of the generalized entropy are

linear in α. Then the mixed hypothesis is linear in λ and the objective function is

quadratic. In fact, the minimum distance estimator can be implemented using only

two OLS regressions! Galichon and Salanié (2023a) show that a large subclass of

distributions Px and Qy can be parameterized in such a way that the derivatives of

the generalized entropy are linear. The linearity of the joint surplus is much more

restrictive; on the other hand, it can be seen as a flexible expansion on basis functions

as in Galichon and Salanié (2022).

In many applications, the data has zeroes in some low-probability matching cells

px, yq due to sampling variations. Since the derivative of the generalizesd entropy

at zero is infinite in common specifications, as our discussion of the logit model

illustrates, the data must be adjusted before the minimum distance estimator can be

used. A simple fix is to add a small number δ ą 0 to the number of observations in

each cell, and to adjust the denominator accordingly so that proportions still sum to

one. Alternative imputation procedures could also be used.

14Given an initial consistent estimate of λ0 and the estimator Σ̂ of the variance-covariance matrix,

such a consistent estimate Ω̂ can be obtained by applying the delta method.
15The number of degrees of freedom of the test is |X|ˆ |Y | minus the dimension of λ0.
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2.2.3 Estimating the Logit Model

The Choo and Siow (2006) model of Section 1.7 has parameter-free distributions Px

and Qy. The minimum distance estimator relies on the analog of (14):

Φβxy “ log
µ̂2
xy

µ̂x0µ̂0y

.

If in addition Φβxy ” φxy ¨ β for some set of basis functions β, then the minimum

distance estimator can be implemented as a generalized least squares estimator. Gali-

chon and Salanié (2023a) describe another possibility: they show that this model can

be estimated via a Poisson regression with two-way fixed effects. Their procedure

also gives estimates of the expected utilities of each group of individuals at the sta-

ble matching. An appealing feature of the Poisson estimator is that it maximizes a

function that is linear in the matching patterns, so that zero cells do not create any

difficulty.

3 Extensions of Separable Models

The separable model is not confined to the bipartite one to-one matching model of

Section 1.1. A variety of extensions have been considered.

3.1 Matches Only

Sometimes the analyst can only observe realized matches, and not who stays sin-

gle. Mergers between firms are an example, as it may be hard to define the universe

of potential partners. This only requires small changes to the analysis: the max-

imum for Gx must be taken over y P Y only, and the maximum in G˚x must be

taken under
ř

yPY µ
M
y|x “ 1. Take the logit model as an example. Now GxpUx¨q “

log
ř

yPY exppUxyq and for
ř

yPY µ
M
y|x “ 1, we have

G˚xpµ
M
¨|xq “

ÿ

yPY

µM
y|x log µM

y|x.
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The difference is that this is attained for all Ux¨ “ logµM
¨|x`ax, for an arbitrary choice

of scalar ax. As a consequence, Equation (12) becomes

Φxy “ log
µ2
xy

nxmy

` ax ` by (16)

and we only identify Φ up to this additive sum.

This partial identification result holds for all separable models: it is a simple

consequence of the fact that without singles, the utility scale for each group is only

determined up to location16. As a result, only the components of the Φ matrix that

interact x and y can be identified in the absence of data on singles. Inference can

proceed as in Section 2.2 once the locations of the utility scales are chosen.

3.2 Dynamic Matching

Choo (2015) extended Choo and Siow (2006) model to a multiperiod setting. He

assumed that divorce was exogenous divorce, with partners committed to the value

of transfers as long as they stay matched. He showed that in this specific model,

the Bellman equations for the value of marriage imply a very tractable “dynamic

marriage function” that can be taken to the data at very little computational cost.

3.3 Unipartite Matching

In the traditional marriage market, the two partners in a couple have different genders.

Workteams may also consist of employees with different skills and specializations. One

may of course want to model matches between partners who can be chosen without

restrictions in aa population. Gender, or specialization, then becomes an observable

characteristic which affects the joint utility in any match. This is the unipartite

model, also known as the roommate model.

In the separable unipartite model with a finite number of groups, a given individual

i has a full type and an observable group x P X; we denote nx the number of

individuals in group x. If this individual matches with a partner j in group x1,

their joint utility is

Φxx1 ` εix1 ` εjx,

16In the model with singles, it was quite natural to normalize Φx0 “ Φ0y “ 0.
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where Φ is a symmetric matrix. This formula is symmetric with respect to the

transformation pi, xq Ø pj, x1q: in mathematical terms, we are forming a pair rather

than a couple. This symmetry requirement turns out to be demanding; it may destroy

the possibility of a stable matching. However, this is not a concern in large markets,

which are the main focus of our analysis17.

In the unipartite model, the decomposition in Theorem 1 becomes

Φxx1 “ Uxx1 ` Ux1x,

where Uxx1 denotes the systematic value for an individual of group x in a match with

a partner of group x1. Note that the matrix U is not symmetric in general: if group

x is more scarce and desirable on average than group x1, it will tend to get a larger

share of the joint utility in a match.

In the unipartite model, we define µxx1 as the number of matches with one part-

ner of type x and one of type x1. This implies in particular that nx “ 2µxx `
ř

x1‰xPX µxx1`µx0, since there are two partners of type x in each px, xq match. Given

these definitions, we have just as in the bipartite model

Uxx1 “
BG˚x
Bµx1|x

pµ¨|xq.

The generalized entropy now takes the following form:

Epµ,nq “ ´
X
ÿ

x“1

nxG
˚
xpµx¨{nxq

and (12) becomes

Φxx1 “ ´
BE
Bµxx1

pµ,nq.

which can be used as the basis for a minimum-distance estimator.

3.4 Beyond One-to-One Matching

Studies of matching on the labor markets require a many-to-one matching model in

which a firm can employ a variable number of workers as in Kelso and Crawford

(1982).

17See Chiappori, Galichon, and Salanié (2019).
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For simplicity, assume that all workers occupy interchangeable functions within

the firm. Consider a firm i of type x that employs a team of workers S; and let the

number of workers in S who have group y be nS
y . The vector nS is the group profile

of the team S. A separable specification of the joint utility of the firm owner and the

workers may be

Φ̃pi, Sq “ Φpx,nS
q ` εipn

S
q `

ÿ

jPS

ηjpxq.

This allows for unobserved shocks to the production of this team in this firm, as well

as to the disutility of labor of each worker; but it rules out their interactions.

One can show (see Galichon and Salanié (2023a) or Corblet (2022)) that there

exist functions Upx,nq and V px, yq such that

Upx,nq `
Y
ÿ

y“1

nyV px, yq ě Φpx,nq

with equality if some firm of type x employs a team n of workers. From this, Legendre-

Fenchel transforms of the expected utilities can be defined. Note that G˚x is defined

over the set of probabilities that a firm in a given group employs a team with a given

profile, µpn|xq, while H˚
y is defined over probabilities that workers in this group work

in the different groups of firms, µpy|xq. These probabilities are linked, however. Since

a firm with a team of type profile n employs ny workers, the number of workers of

type y employed by all firms of type x must be

µpx, yq “
ÿ

nPNY

nyµpx,nq.

This allows us to redefine H˚
y as a function H̄y of the matching patterns µpx,nq and

to define the generalized entropy E . It is easy to check that just as in the one-to-one

model,

Φpx,nq “ ´
BE

Bµpx,nq
. (17)

Our minimum distance estimator can be directly applied to (17). The only difficulty

is that with so many possible values of the type profile n, many observed matching

cells will be zero.
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3.5 Continuous Observables

The most important extension may be that to continuous observed characteristics

(which we called “groups” earlier). The data may have relevant covariates like income,

sales, etc that are best modeled as continuous. First consider the case when all

observable characteristics x and y are continuous (possibly multidimensional). Simply

taking the limit of discrete models will not do: expected utilities will diverge to

infinity. Building on earlier work by Dagsvik (1994), Dupuy and Galichon (2014)

extended the Choo and Siow “logit” model to allow for continuous characteristics.

To do so, they suppose that each individual can only match with a denumerable set

of potential partners; and that the probability that they meet any of these partners is

governed by a Poisson process. More precisely, consider a man with characteristics x.

Under separability, there exists a function U such that this man will obtain a utility

level Uxy ` εmy if he matches with a woman with characteristics y. Now assume

that the set of potential partners of this man generates draws pyk, εkq for k P N, and

that these draws are generated by a Poisson process that is uniform over y and has

exponential density over ε. Given a similar assumption on the women’s side, it can

be shown that the matching patterns are the continuous analog of the discrete Choo

and Siow (2006) model: the density of the matches between men of characteristics x

and women of characteristics y is

µ2
px, yq “ µpx, 0qµp0, yq exppΦpx, yqq,

where we changed the notation from subscripts to parenthesized arguments to em-

phasize that they are continuous.

Dupuy and Galichon (2014) show that the model can be solved with IPFP and

that the function Φ can be estimated essentially in the same way as the discrete

model. They emphasize the quadratic case in which Φpx, yq “ x1Ay for some unknown

“affinity matrix” A. Then the affinity matrix is overidentified by the equality

A “
B2 log µ

BxBy
px, yq for all x, y.

Moreover, one can test the rank of A to check whether the model may have a more

sparse representation.

Bojilov and Galichon (2016) specialize the model further by assuming that the

vector of continuous characteristics x is jointly Gaussian, as is the vector y. They
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also rule out singles. Then the stable matching takes a very simple form: men of char-

acteristics x match with women of characteristics drawn from NpTx, V q, where T and

V depend on A and on the variances of x and y. This is one example when regressing

the characteristics of one partner on that of the other recovers useful information

on the joint surplus. More generally, Chiappori, Oreffice, and Quintana-Domeque

(2012) studied “index-based” models, in which scalar combinations Ipxq and Jpyq

of the continuous characteristics x and y have all payoff-relevant information. This

requires that Φpx, yq be a function of Ipxq and Jpyq only, and that the unobserved

heterogeneity terms be independent of x and y conditionally on Ipxq and Jpyq. They

show that at any stable matching, the conditional distribution of Ipxq conditional

on y only depends only on the value of Jpyq, and conversely. Unfortunately, this is

only moderately useful: the index model is a non-generic case in which the stability

requirement only determines the matching between values of Ipxq and Jpyq and not

between x and y. Therefore one cannot learn the form of the index Jpyq by regressing

the characteristics x of men on the characteristics y of their partners18. Guadalupe,

Rappoport, Salanié, and Thomas (2021, Appendix A.1) show that as a special but

useful case, it is possible to test for this index property and to recover the indices I

and J in the Dupuy and Galichon (2014) model.

Our datasets often contain both discrete and continuous variables. Suppose for

instance that men have discrete characteristics a and continuous characteristics x,

while women have discrete characteristics b and continuous characteristics y. Under

the natural extension of the Poisson process described above, the formula for the

density of matches becomes

µabpx, yq “
a

µapx, 0qµbp0, yq exppΦabpx, yq{2q.

Guadalupe, Rappoport, Salanié, and Thomas (2021) show how inference can proceed

in this more general case.

18See Chiappori, Oreffice, and Quintana-Domeque (2020) for more information.
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4 Applications of Separable Models

The marriage market has proved to be a very fruitful area for applications of separable

models. I will only mention a few papers here19.

Choo and Siow (2006) proposed the logit model and applied it to study the change

of marriage patterns in the US after the Roe vs Wade 1973 ruling on abortion. Before

1973, some states already had abortion rules that were at least as permissive as the

Supreme Court ruling; Choo and Siow (2006) call them the non-reform states as the

rulling had no direct effect there. In the other, reform states, Roe vs Wade relaxed

the regulations on abortion. Formula (14) suggests a simple differences-of-differences

estimator. The relative changes in the log-marriage patterns across 1973 directly

identify the relative changes in the joint surplus:

p∆ΦxyqR ´ p∆ΦxyqNR “

ˆ

∆ log
µ2
xy

µx0µ0y

˙

R

´

ˆ

∆ log
µ2
xy

µx0µ0y

˙

NR

.

Now consider what Choo and Siow (2006) call the “gains from marriage”—the ex-

pected utilities of the various groups on the marriage market. Since they coincide

with minus the logarithm of the probability of staying single, they are easily identified,

with for instance

p∆uxqR ´ p∆uxqNR “ p∆ log µx0{nxqNR ´ p∆ log µx0{nxqR .

Choo and Siow (2006) found that Roe vs Wade reduced the gains from marriage for

young adults, and that it may explain up to 20% of the fall in marriage rates in the

1970s. The simplest explanation is that the availability of abortion allowed some

young adults to delay marriage or to forgo it altogether.

In the first application of separable matching models with continuous observed

types, Dupuy and Galichon (2014) used Dutch data that has information not only

on the usual sociodemographics, but also on anthropometric measurements and on

the “Big Five” personality traits. Their estimates of the affinity matrix A stress the

importance of diagonal terms (education, then BMI), and also of some off-diagonal

interactions (e.g., a positive one between the emotional stability of husbands and the

conscientiousness of women). Their tests indicate that the affinity matrix is full-rank:

marital sorting cannot be explained by a small number of indices.

19I refer the reader to Chiappori (2020) and Chiappori and Salanié (2023) for more information.
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Several recent studies have incorporated same-sex marriage in their analysis of the

marriage market. One could model the marriage market as unipartite, with gender

becoming just one of the observable characteristics that contribute to the joint surplus.

Ciscato, Galichon, and Goussé (2020) model the same-sex marriage market and the

other-sex marriage market as separate instead: the former as unipartite, and the

latter as bipartite. They find that while sorting by ethnicity is not as strong for

same-sex couples, sorting by education is stronger, and age matters less.

The marriage market, like others, faces formal and informal trade barriers. Most

marriages are between citizens of the same country, for instance. Ahn (2023) studies

cross-border marriages across Asian countries—rich Taiwan importing brides from

poorer Vietnam. She shows that when obstacles to these marriages change, the

resulting shifts in the equilibrium “prices” (the division of the surplus) affects the

marriage outcomes and intra-household allocations of all individuals, whether they

participate in cross-border marriages or not.

Chiappori, Salanié, and Weiss (2017) studied trends in the marriage patterns of

US cohorts born between 1943 and 1972. They tested several variants of the Choo

and Siow (2006) model against the data, allowing for arbitrary changes in the value

of marruage for each education group over time. The basic model is masssively

rejected; the data can only be rationalized by an increase in the preferences for

assortative matching on education, as measured by the double differences in the

esttimated joint surplus. This results in a increase in the “marital college premium”

for white women: as home production and in particular investing in children’s human

capital has become more important for educated parents, assortative matching by

education has increased, to the benefit of women.

Chiappori, Costa-Dias, and Meghir (2018) analyze the British marriage market

using a structural model based on a three-stage game: individuals independently

invest in their human capital; then they match on the marriage market; finally, the

resulting households consume and supply labor. They use their estimates to evaluate

the impact of cheaper access to higher education.

Koh (2023) uses the Choo and Siow (2006) model to evaluate the effects of the

change in the racial mix of the US since 1980 on the gains from marriage of various

groups. Her estimates suggest that college-educated Black men benefited from in-

creased intermarriage with college-educated White women. On the other hand, Black
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women did not gain as much.

While it is hard to get even indirect proxies of transfers between partners on the

marriage market, the situation is usually more favorable on the labor market. Data

on individual transfers can prove quite helpful to identify the parameters20.

Applications of matching to the labor market often use the search framework (see

Section 6). Still, there has been much work recently on separable models. Lindenlaub

(2017) models matching between workers and jobs who differ in two dimensions:

manual and cognitive. She shows that the US labor market has moved towards

stronger worker-job complementarities in cognitive skills, which explains part of the

increased wage polarization. Her paper also defines a new index of multidimensional

sorting. Corblet (2022) uses a many-to-one variant of the Choo and Siow model

to examine how workers in different age and education groups sort across firms in

different industries on the Portuguese labor market, where the supply of high-school

and university graduates was low until the 1990s and has increased markedly since

then. Her estimates suggest that increases in the relative productivity of graduates

have not been enough to compensate for the large increase in their numbers.

Traditional labor markets only allow firms to hire a worker’s bundle of skills:

those that are valuable to the firm and those that are less valuable to it. Choné and

Kramarz (2022) argue that technological change, remote work, and the gig economy

will make it easier for worker to “unbundle” their skills. They show that the resulting

shifts in labor market sorting benefit “generalist” workers and lead firms to specialize

more.

Calvo, Lindenlaub, and Reynoso (2023) link sorting in the marriage market and

on the labor market. When partners form a couple, they choose an intra-household

allocation of consumptions and labor supplies; then those who work match with firms

in the labor market. Marriage choices thus depend on expectations of later firm-

worker sorting. Using German data, Calvo, Lindenlaub, and Reynoso (2023) find

that the observed drop in the gender pay gap is not due to technical change in the

labor market, but rather to changes in both the complementarity and the allocation

of the time allocated to home production hours.

20On the other hand, data on average transfers between groups—say the average salary of a

foreman in the car industry—are much less useful; see Salanié (2015).
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Finally, it is worth noting that the literature on trade that follows Eaton and Kor-

tum (2002) partly relies on a stochastic specification that is similar to a multiplicative

version of the Choo and Siow (2006) model21.

4.1 A Caveat

One point is not always appreciated in the literature: getting reasonably precise

estimates may require large datasets when the matching cells have very different

sizes. To take a simple illustration, consider a Choo and Siow (2006) model with

no singles (that is, we only observe matches) and only two groups: X “ Y “ 2.

Then we know from Section 3.1 that we can only identify one parameter, the double

log-difference

log
µ11µ22

µ12µ21

.

Call it p0. The natural estimator on a sample of n matches is the empirical analog

p̂n “ log
n11n22

n12n21

where nxy is the observed number of px, yq matches. It is easy to see that its asymp-

totic variance is

Var p̂n “
1

n11

`
1

n12

`
1

n21

`
1

n22

.

Since x Ñ 1{x is convex and n11 ` n12 ` n21 ` n22 “ n, the minimum variance is

achieved when all nxy “ n{4; then Var p̂n “ 4{n. Any small cell size deteriorates the

performance of the estimator, as

Var p̂n ě
1

minx,y“1,2 nxy

.

The simulations reported in Galichon and Salanié (2023a) show that it can be a

serious problem in applications. They fit an 8-parameter logit model to the data

used by Choo and Siow (2006); then they use the estimated parameter values as the

data-generating process for a Monte Carlo study of the performance of the minimum-

distance and Poisson estimators. They found that both estimators perform similarly;

they exhibit sizable biases for samples as large as 300,000 observations.

21See Costinot and Vogel (2015) for a survey.
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The Choo and Siow (2006) dataset has unusually large variation in the size of

the matching cells: the P90-P10 ratio is larger than 100. The estimator is likely to

perform better in other applications. As an example, Galichon and Salanié (2023a)

obtain very good results in another simulation when they “shrink” parameter values

so that the sizes of the matching cells are less dispersed. Still, this is an important

caveat to keep in mind; it may be prudent for instance to combine groups whose sizes

are small.

5 Non-separable Models

Separable models restrict the distributions of the unobserved heterogeneity terms in

order to identify the joint surplus. In contrast, most of semiparametric econometrics

has emphasized relaxing assumptions on the distribution of error terms. In a series of

papers (Fox, 2010; Fox, Yang, and Hsu, 2018; Fox, 2018), Jeremy Fox has proposed

methods that follow this alternative path.

The “rank-order property” is a central concept in these papers. To understand it,

first consider the usual single-agent discrete choice models. Such models have a 0-1

variable y determined by whether some scalar index xβ0 is large enough:

y “ 1 iff xβ0 ą ε.

If the distribution of ε is independent of x, then clearly Prpy “ 1|xq is an increasing

function of xβ0. This idea goes back to Manski (1975). It can be used to estimate β0

up to an increasing transformation: first obtain a flexible estimate p̂pxq of Prpy “ 1|xq,

then trace the level curves of x Ñ p̂pxq. They coincide with the level curves of the

unknown function xβ0. Moreover, xβ0 ą x1β0 if and only if p̂pxq ą p̂px1q. This can be

written as the set of inequalities

pxβ0 ´ x
1β0qpp̂pxq ´ p̂px

1
qq ě 0 for all x, x1.

This yields several consistent estimators. One can for instance take a set of pairs of

observations pi, jq and find the values of β that minimize the number of violations of

the set of inequalities

pxiβ0 ´ xjβ0qpyi ´ yjq ě 0.
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Manski’s maximum score estimator is another variant, under slightly different hy-

potheses.

The form of the Choo and Siow formula (14) suggests a natural extension of this

monotonicity property: we could posit that

Φpx, yq ` Φpx1, y1q ´ Φpx, y1q ´ Φpx1, yq ą 0

iff log µpx, yq ` log µpx1, y1q ´ log µpx, y1q ´ log µpx1, yq ą 0. (18)

Just as in the one-sided model, this would give a consistent estimator of the function

Φ, up to additive terms apxq` bpyq and to a scalar multiple. This rank-order property

clearly holds in the Choo and Siow (2006) model, since the double difference on Φ is

exactly twice the double difference on log µ. Graham (2013) showed that it holds in

all separable models where the distributions of heterogeneity terms are iid for each

gender; that is, Px does not depend on x and Qy does not depend on y. His result

was extended by Fox (2018) to distributions that are only exchangeable. These two

results give a rigorous justification for the use of a maximum score approach under

these assumptions.

Another way of using monotonicity is to compare matchings across markets. Sup-

pose that the joint utility from a match is

Φ̃mw “ Φxy ` ξmw.

If we could observe many markets in which both the joint surplus Φ and the numbers

of men and women in each group q are the same, then differences across matchings

across markets would be entirely due to different draws of the ξ terms. If all matchings

are stable in their respective markets, they must maximize the sum of joint utilities

on each. More precisely, suppose that a matching M (a list of couples h “ pm,wq)

is stable when the unobservables ξ, and another matching M1 is stable when the

unobservables take different values ξ1. Then we must have

ÿ

h“pm,wqPM

pΦpxm, ywq ` ξmwq ą
ÿ

h“pm,wqPM1

pΦpxm, ywq ` ξmwq.

Fox (2010) suggested dropping the unobservables from this equation. This results in

a set of inequalities that can be used in a maximum-score estimator. It can only be an

approximation in general. Somewhat miraculously, it is exact in the Choo and Siow
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(2006) model: given (16), maximizing the sum of the joint surpluses is equivalent to

maximizing the loglikelihood.

Finally, Fox, Yang, and Hsu (2018) take the opposite approach to Choo and Siow:

they restrict the specification of the joint surplus Φ in order to identify the distribution

of the unobservables. The simplest (and most restrictive) result in Fox, Yang, and Hsu

(2018) assumes that the joint surplus Φxy is observed for every possible match, that

it varies continuously, and that the ξ terms are distributed independently of it. They

show that if the analyst observes many markets with different joint surplus matrices

Φ but the same distribution for ξ, then the distribution of the complementarities

across these unobservables is identified.

One advantage of the inequalities-based approaches is that when the underlying

assumptions are satisfied, they hold with little modification from one-to-one to many-

to-many matching problems. In fact, they have found their main applications in the

industrial organization, marketing strategy fields, where firms interact within often

complex networks of relationships. In addition, the analyst can choose to base estima-

tion on a subset of what they think are the most relevant or informative inequalities.

In an early example, Fox and Bajari (2013) applied the maximum-score estimation

to the FCC spectrum auctions. Since bidders value complementarities across licenses,

this can be seen as a many-to-one matching game. In this context, the inequalities

are meant to reflect pairwise stability: in equilibrium, a bidder will not want to swap

one of their licenses for one they don’t own, given prevailing prices. Fox and Bajari

(2013) found that while auctioning licenses was much more efficient than the previous

lottery system, auctioning larger blocks of licenses would be even better.

Fox (2018) uses data on the sales of car parts to carmakers in the US. This is

a many-to-many example, as a given seller may trade with several buyers, and vice

versa. Fox (2018) uses his estimates to evaluate a counterfactual in which General

Motors was made to divest Opel, and to test whether the entry of Asian carmakers

led suppliers to improve the quality of their products.
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6 Matching with Frictions

Introducing frictions in the matching process is another way of reconciling the data

and the theory. Just as in the labor market, this can be done in a search model.

Meetings between potential parners occur randomly; when a meeting takes place,

each partner must choose whether to propose a match and a division of the joint

utility, or continuing to search. The cost of an additional search is usually taken to

be the utility that is lost while waiting for another meeting. In the simplest version of

the model, matches are destroyed randomly; richer models incorporate utility shocks

that prompt partners to dissolve their match.

6.1 Identification

It can be hard to distinguish the predictions of matching models with unobserved

heterogeneity and those of matching models with frictions. To be more precise, take

the pioneering Shimer and Smith (2000) model. They describe a one-to-one, unipar-

tite matching market in which types x P r0, 1s meet randomly. If a type x meets a

type y, each individual then decides whether to wait for a better deal or to agree

to form a match with an agreed division of the surplus. The match lasts until it is

randomly dissolved. Shimer and Smith (2000) give conditions under which there is

a unique steady state equilibrium. Denote µpx, 0q the numbers of singles and µpx, yq

the matching patterns in this steady state. We know from Section 1.5 that we could

fit to this data a variety of separable models (for instance the Choo and Siow (2006)

model) and rationalize the data without any reference to frictions.

On the other hand, even the logit model can generate matching patterns that

cannot be rationalized by some classes of models with frictions, even though they

have more parameters. Take a type x in the Shimer and Smith (2000) model. When

unmatched, she will meet all other types with a probability proportional to their

frequency in the unmatched population. This applies in particular to all types that

belong to x’s “matching set” (that is, types that are acceptable to her.) Take two

such types y and y1; then it can be shown that

µpx, yq

µpx, y1q
“
µp0, yq

µp0, y1q
.
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This equality imposes testable restrictions on the observed matching patterns that are

only compatible with some separable models. They are specific to the assumptions in

Shimer and Smith; models of directed search, for instance, would generate different

restrictions. The key point here is that models with frictions really add value in

settings in which matches are observed over several periods and/or transfers can

be observed. On labor markets for instance, wage transitions and the dynamics of

employment offer rich information to identify all components of the model22.

In such multiperiod models, three new elements must be specified: how meetings

occur; the degree of commitment to the division of the surplus; and the process by

which matches dissolve (divorces in marriages, quits and layoffs in employment rela-

tionships). Take marriages as an illustration. Potential partners used to be found in a

very narrow geographic area, and they are still driven by social and work groups. Di-

vorces are legal in most countries, which by definition limits the commitment abilities

of partners. They are governed by a wide variety of legal frameworks that determine

exit options. Moreover, divorces clearly do not happen randomly. Random shocks

may affect the joint utility of existing matches. Better still, shocks to wages for

instance change exit options and therefore the bargaining power of partners. This

begs the question of the ability of partners to commit to the division of the surplus.

Full commitment makes little sense when matches are allowed to dissolve. In the

no-commitment version, partners may renegotiate at any point in time. Several re-

cent papers have adopted the limited commitment hypothesis in Mazzocco (2007).

In this framework, partners cannot commit not to dissolve their match; the division

of surplus is renegotiated only when the participation constraint of one partner be-

comes binding. The only way to keep that partner in the match may be to violate the

participation constraint of another partner; then renegotiation fails and the match

dissolves.

6.2 Applications

Greenwood, Guner, Kocharkov, and Santos (2016) set up a search-and-matching

model in which individuals choose their education, marry or not, work and invest

in home production, and may divorce or remarry. They fit their model on US data

22See Hagedorn, Law, and Manovskii (2017).
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from 1960 and simulate it for 2005, using the new prices and wages. They find that

cheaper durable goods have reduced labor inputs into home production and allowed

women to work in the market; the lower gender wage gap played a smaller role. As

individuals became more independent, they searched more; marriage declined and

divorce increased.

Ciscato (2021) also studied 50 years of US data with a model of education, mar-

riage, work, and divorce. He puts more emphasis in complementarities on home

production, and on renegotiation of the division of surplus when wage shocks hit

individuals. His analysis suggests that while changes in relative wages explain part

of the rise in education and the decline in marriage, complementarities in home pro-

duction are needed to explain the relative increase in the number of college-educated

women and the stability on their marriage rate.

Shephard (2019) considers an overlapping generations model that allows different

cohorts to inter-marry. He uses this framework to analyze the evolution of age at first

marriage or of the marital agegap. Among other findings, the significant increase in

women’s relative earnings since the 1980s has reduced the marital age gap.

Lindenlaub and Postel-Vinay (2023) model the matching between workers and jobs

with multiple characteristics on the labor market. They find that sorting is positive

between those worker-job characteristics that have the stronger complementarities,

and negative in other dimensions. Lindenlaub and Postel-Vinay (2021) relies on the

job ladder idea to identify the observable characteristics of workers and jobs that

generate joint surplus. The intuition is that since matches maximize joint surplus,

workers tend to move to jobs that offer a higher joint surplus. This revealed preference

argument allows them to use observed transitions to derive a sparse proxy for the joint

surplus from a match.

Concluding Remarks

Most of the literature has modelled matches as affecting only the utilities of the

partners. Social norms like the local marriage rate could influence the preferences of

individuals; peer effects can also play a role. Mourifié (2019) and Mourifié and Siow

(2021) introduced marriage matching functions that go in this direction, without a
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specific structural underpinning. More research is needed, especially for applications

to industrial organization—firms’s mergers for instance clearly affect other firms.

Finally, there are tight analogies between matching with perfect transferable util-

ity and hedonic models, as pointed out by Chiappori, McCann, and Nesheim (2010).

More generally, they can both be reinterpreted as network flow problems23; this may

open the way to new insights and methods.
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A Some Convex Analysis

Consider a convex function ϕ : Rn Ñ RYt`8u that is not identically `8. If ϕ is

differentiable at x, we denote its gradient at x as the vector of partial derivatives,

that is ∇ϕ pxq “ pBϕ pxq {Bx1, . . . , Bϕ pxq {Bxnq. It is the only vector y P Rn such that

ϕ px̃q ě ϕ pxq ` yJ px̃´ xq @x̃ P Rn. (19)

This motivates the definition of the subdifferential Bϕ pxq of ϕ at x as the set of vectors

y P Rn such that relation (19) holds. Equivalently, y P Bϕ pxq holds if and only if

x ¨ y ´ ϕ pxq “ max
x̃
tx̃ ¨ y ´ ϕ px̃qu (20)

(where the equality sign obtains by taking x̃ “ x in (19)).

The right-hand side of (20) plays a special role in convex analysis: it is the

Legendre-Fenchel transform of ϕ at y and is usually denoted ϕ˚ pyq. By construc-

tion,

ϕ pxq ` ϕ˚ pyq ě x ¨ y.

This is called Fenchel’s inequality;it is an equality if and only if y P Bϕ pxq. In fact,

the subdifferential can also be defined as

Bϕ pxq “ arg max
y
tx ¨ y ´ ϕ˚ pyqu .

Finally, the double Legendre-Fenchel transform of a convex function ϕ (the trans-

form of the transform) is simply ϕ itself. As a consequence, the subgradients of ϕ

and ϕ˚ are inverses of each other. In particular, if ϕ and ϕ˚ are both differentiable

then

p∇ϕq´1 “ ∇ϕ˚.

To see this, remember that y P Bϕ pxq if and only if ϕ pxq ` ϕ˚ pyq “ x ¨ y. Since

ϕ˚˚ “ ϕ, this is equivalent to ϕ˚˚ pxq ` ϕ˚ pyq “ x ¨ y, and hence to x P Bϕ˚ pyq. As a

result, the following statements are equivalent:

(i) ϕ pxq ` ϕ˚ pyq “ x ¨ y;

(ii) y P Bϕ pxq;
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(iii) x P Bϕ˚ pyq.

If ϕ is differentiable at x and ϕ˚ is differentiable at y, the last two items obviously

become y “ ∇ϕpxq and x “ ∇ϕ˚pyq.

B Finite Markets

Assumption 3 may not be a good approximation in smaller matching markets. Most

tools presented in Sections 1 and 2 adapt without difficulty, however. Take the func-

tion G̃x defined in Section 1.5:

G̃xpUx¨q “
1

nx

ÿ

mPx

max
yPY0

pUxy ` εmyq.

As the maximum of linear functions, it is convex, and it has a subgradient everywhere.

This subgradient consists of the derivative almost everywhere; the exceptions are

vectors Ux¨ where Uxy ` εmy “ Uxt ` εmt for some py, tq P Y 2 and m P x.

The Legendre-Fenchel transform of G̃x is defined by

G̃˚xpµ¨|xq “ max
Ux0“0,U1,...,U|Y |

˜

ÿ

yPY

µxyUxy ´ G̃xpUx¨q

¸

.

It is convex, as always; and since G̃x was convex, the properties of the transform (see

Appendix A) imply that

Ux¨ P BG̃
˚
xpµ¨|xq iff µ¨|x P BG̃xpUx¨q.

Proceeding similarly for women, we define the generalized entropy as in the text:

´Ẽpµ; qq “
ÿ

xPX

nxG̃
˚
xpµx¨{nxq `

ÿ

yPY

myH̃
˚
y pµ¨y{myq.

Since µÑ ´Ẽpµ; qq is convex, we denote its subgradient as

B

´

´Ẽ
¯

pµ; qq ”

#

ÿ

xPX

nxax `
ÿ

yPY

myby | ax P BG̃
˚
xpµx¨{nxq, by P BH̃

˚
y pµ¨y{myq

+

.

It is a convex, closed subset of R|X|`|Y |; as such, its projection on the xy axis is a

closed interval rexy, ēxys. Remember from Theorem 1 that Uxy ` Vxy ě Φxy. This
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gives an upper bound Φxy ě ēxy. If µxy ą 0, then Uxy ` Vxy “ Φxy, so that we also

have a lower bound Φxy ě exy. Moreover, if G̃˚x is differentiable at µ¨|x and H̃˚
y is

differentiable at µ¨|y, we have exy “ ēxy.

C Some Generalized Entropies

We give here the forms of the generalized entropy functions for a few common speci-

fications.

C.1 The Choo and Siow Model with Heteroskedasticity

Let us start with an easy extension of the Choo and Siow (2006) logit model: the

distributions Px and Qy are type I extreme values iid vectors with unknown scale

factors σx and τy respectively. The homoskedastic model obtains when all σx and τy

equal one; a gender-heteroskedastic model would have all σx equal to one and all τy

equal to an unknown τ .

The generalized entropy of this model is

Epµ, qq “ ´
ÿ

xPX

σx
ÿ

yPY0

µxy log
µxy

nx

´
ÿ

yPY

τy
ÿ

xPX0

µxy log
µxy

my

.

Note that if we collect the scale factors in α “ pσ, τ q, the generalized entropy and

its derivatives in µ are linear in α.

C.1.1 Nested Logit

Consider a two-layer nested logit model. Take men of type x first. Alternative 0

(singlehood) is obviously special; we put it alone in its nest. Each other nest n P Nx

contains alternatives y P Yn. The correlation of alternatives within nest n is proxied

by 1 ´ pρxnq
2 (with ρx0 “ 1 for the nest made of alternative 0). Similarly, for women

of type y, alternative 0 is in a nest by itself with parameter δy0 “ 1 and alternatives

x P Xn1 are in a nest n P N 1
y with parameter δyn1 . We collect the parameters ρ and δ

into α.
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The formulæ in Example 2.1 of Galichon and Salanié (2022) imply that if y is in

nest n P Nx and x is in nest n1 P Ny, then

BEα

Bµxy

pµ, qq “ ´ρxn log
µxy

µx0

´ p1´ ρxnq log
µxn

µx0

´ δyn1 log
µxy

µ0y

´ p1´ δyn1q log
µn1y

µ0y

, (21)

where we defined µxn “
ř

tPYn
µxt and µn1y “

ř

zPXn1
µzy. Once again, this is linear in

the parameters α; it remains linear if we impose constraints on the nests (for instance,

that Nx is the same for all types x) and/or linear constraints on the ρ parameters (for

instance, that ρxn only depends on n). Here too the second derivatives, while more

complicated than in the multinomial logit, can be computed in closed form.

C.1.2 Mixed Logit

Let us now describe a random coefficient logit model. Consider a man i of type x,

endowed with preferences ei over a set of d observable characteristics Z of potential

partners. We add an idiosyncratic shock ξi that is distributed as a standard iid type

I extreme value vector over IRY`1, independently of ei, and a scale factor s ą 0:

εiy “
d
ÿ

k“1

Zykeik ` sξiy

or in matrix form: ε “ Ze` sξ. This specification is standard in empirical IO24.

Let individual preferences e of men of type x have distribution Pe
x. We will seek to

estimate the parameters β of the joint surplus, the scale factor s, and the parameters

of the distributions Pe
x. We collect s and the parameters of Pe

x in a vector α.

To compute the derivative of the generalized entropy function, we only need to

replace the max operator in the definition of the function Gx with a regularized

“softmax” that accounts for the integration over the shocks e:

GxpU ;αq “

ż

s log
ÿ

y“0,1,...,Y

exp

ˆ

Uy ` pZeqy
s

˙

dPe
xpeq.

24In Berry, Levinsohn, and Pakes (1995), the covariates in Z stand for the observed characteristics

of the products; the e are individual valuations of these characteristics; and the ξ are idiosyncratic

shocks.
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This gives

G˚xpν;αq “ max
UPRY`1

«

ÿ

yPY0

νyUy ´

ż

s log
ÿ

y“0,1,...,Y

exp

ˆ

Uy ` pZeqy
s

˙

dPe
xpeq

ff

.

By the envelope theorem, the derivative of G˚xpν;αq with respect to ν is the vector

U that solves the system

νy “

ż

expppUy ` pZeqyq{sq
ř

t“0,1,...,Y expppUt ` pZeqtq{sq
dPe

xpeq @y “ 1, . . . , Y.

This is exactly isomorphic to the inversion problem in Berry, Levinsohn, and Pakes

(1995), with the unknown U standing for the product effects and ν playing the role of

the product market shares25. After replacing ν with the observed µx¨{nx, the system

can be solved by any of the algorithms that are standard in this literature. The

solution gives row x of the matrix U . Proceeding in the same way for other types of

men, and solving for V for women, gives the derivatives of the generalized entropy

function:

BEα

Bµxy

pµ, qq “ ´
BG˚x
Bνxy

ˆ

µx¨

nx

˙

´
BH˚

y

Bνxy

ˆ

µ¨y
my

˙

“ ´Uxy ´ Vxy “ ´Φxy.

Note that except in trivial cases, the derivatives of the generalized entropy are not

linear in α.

25The limit case s “ 0 yields the pure characteristics model of Berry and Pakes (2007).
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