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Introduction

The term “hedonic” is widely used in economics and in the applied statistics

literature, where it may refer to quite different concepts. In the broader

sense, “price hedonics” is a tool to explore the relationship between the

prices of differentiated products and their characteristics. As such, it has a

long history, with contributions dating as far back as Waugh (1928). The

development of the characteristic-based approach to consumer theory by

Becker (1965) and Lancaster (1966) and the pioneering empirical work of

Griliches (1961) brought it back to the fore. Since then “hedonic regressions”

have often been used to adjust for quality shifts or technological upgrades

in price indices1.

Simple price regressions can only constitute reduced-form equations of

an equilibrium system, however; and their estimated parameters combine

demand and supply factors. In a fundamental contribution, Rosen (1974)

introduced hedonic equilibrium models in which consumers buy differenti-

ated varieties of a good from sellers. Consumers vary according to their

1In the US, the Bureau of Labor Statistics now uses hedonic adjustments for 34
of its 273 item categories. These include electric appliances, electronic equipment,
and also clothing items (https://www.bls.gov/cpi/quality-adjustment/home.htm, con-
sulted June 28, 2022).
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willingness to pay for varieties with different characteristics; and producers

have idiosyncratic production costs for each variety. These differences in

utilities and costs induce a sorting between consumer and producer types in

competitive equilibrium; this is mediated by a hedonic price function which

maps the characteristics of an alternative into its equilibrium price.

This chapter will focus on such competitive equilibrium hedonic mod-

els and on related models of matching. The term “competitive” reflects a

substantial restriction. While it greatly simplifies the analysis, markets for

differentiated products may be far from perfect competition. Then markups

need to be incorporated in the analysis, as argued by Pakes (2003).

The analysis in most of this chapter will also assume that agents’ utilities

and costs are quasilinear in prices, and that agents can transfer utility (or

another numéraire) one-for-one, without cost or friction. This is usually

called the perfectly transferable utility (TU) setting. Some of our results

extend to utilities which are not quasilinear in prices; we will describe these

imperfectly transferable utility (ITU) extensions in later sections. However,

we shall always assume that transfers are possible. We will thus be leaving

aside recent developments in the econometrics of matching with (perfectly)

non-transferable utility (NTU), for which we refer the reader to the recent

survey by Agarwal and Somaini (2023).

It may not be obvious a priori why hedonic markets and matching mar-

kets belong in the same chapter. As Roth (2015, p.4) eloquently put it,

matching is about “how we get the many things we choose in life that also

must choose us”. To cite some leading examples: marriage partners (Becker

(1973, 1974)) choose each other; so do hospitals and residents (Roth (1984));
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colleges and students (Gale and Shapley (1962)); and employers and employ-

ees (Kelso and Crawford (1982)). This two-sided choice problem is a priori

absent from hedonic markets: hedonic demand is just a particular way of

representing consumer choice between passive objects. Similarly, hedonic

supply has sellers choose which objects they bring to market.

To illustrate this difference, compare the house sale market and the house

rental market. The seller of a house only cares about the price they receive,

as the relationship with the buyer ends once the transaction is concluded.

The sale market can be described quite naturally as a hedonic market. On

the other hand, in the rental market the landlord cares about more than

just the rental price; various characteristics of the other party matter to

her, such as the ability of the tenant to pay in time and to maintain the

housing unit. The rental market is therefore better described as a matching

market2.

In spite of these differences, the connection between hedonic and match-

ing models is deep and fruitful. Fundamentally, the objects traded in a

hedonic market can be seen as virtual intermediaries that match buyers and

sellers. Their prices determine the equilibrium utilities in a corresponding

matching market. We will show that the analogy is exact if we endow ob-

jects with a well-chosen (if virtual) objective function. Hedonic equilibrium,

which requires that demand equal supply for each object, generates a match-

ing of buyers and sellers via the objects they exchange in equilibrium. This

analogy can be pushed further. The choice of an object by a consumer is a

2This is related to the distinction between private values and common values that plays
a crucial role in hidden information models.
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simple form of matching in which the object is passive; just as the choice of

selling a particular object is matching a seller with a passive object. Hedo-

nic equilibrium thus breaks down into two simple matching problems, which

are linked by the equilibrium condition that reconciles the aggregate demand

for each object to its aggregate supply. It is therefore not so surprising that

hedonic models are closely related to matching models.

Buyers i = 1, . . . , n Varieties z ∈ Z Sellers j = 1, . . . ,m

i
z = z∗ij

j

Di(P
∗)

Sj(P
∗)

Figure 1: A Stylized Hedonic Market

In order to convey the intuition more precisely, we now present a stylized

hedonic market. We consider the market for varieties z of an indivisible

good. Given a price function for varieties z → P ∗(z), each buyer i buys zero

or one unit of the good; and each seller j has a production capacity of one

unit . Buyers choose which variety of the good they buy, if any, and sellers

choose which variety they produce, if any. Figure 1 shows a trade where a

buyer i buys a unit of a variety z∗ij from a seller j.
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Let us now assume that the preferences of all buyers and sellers are

quasi-linear, with a common and constant marginal utility of income: buyer

i chooses the z = Di(P
∗) that maximizes her net utility Ui(z)− P ∗(z), and

seller j chooses the variety zj = Sj(P
∗) that maximizes her profit P ∗(z) −

Cj(z). From an efficiency perspective, it is natural to consider the variety

that maximizes the joint surplus of the buyer and seller, that is the sum

Φij(z) ≡ Ui(z) − Cj(z) of consumer surplus plus seller profit. The value

of the maximized surplus Φ∗
ij = maxz Φij(z) is a monetary equivalent that

captures the value of the trade. Furthermore, it is also natural to match

buyers and sellers in a way that maximizes the total value of these joint

surpluses. This leads to modeling hedonic equilibrium as maximizing the

total surplus. Figure 2 illustrates the matching model that corresponds to

the hedonic market of Figure 1.

Buyers i = 1, . . . , n Sellers j = 1, . . . ,m

i
z = Z∗

ij

j

Ui(·)

Cj(·)

Figure 2: A Stylized Matching Market
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In any trade, the price paid by the buyer to the seller determines how

the joint surplus from the transaction is shared between the two parties. In

bilateral monopoly, the mutually acceptable prices only need to ensure that

both the buyer and the seller are above their reservation utility. The situa-

tion is very different in a competitive market, as agents have the possibility

to seek another counterpart. In equilibrium, no seller-buyer pair could set

up a new, mutually advantageous trade. As competitive equilibrium lies

in the core, no such blocking pair may exist: this is the stability condition

introduced by Gale and Shapley (1962).

Now any seller-buyer pair that does trade in equilibrium generates ex-

actly the joint surplus; therefore in equilibrium, the sum of the equilibrium

utilities of all buyers and sellers must equal the sum of the surplus from

all trades. Since stability requires that the sum of utilities of any potential

buyer-seller pair be at least as large as the surplus they could get by trading,

in equilibrium the sum of all utilities must be the smallest possible among

all stable matchings.

To summarize: minimizing the sum of utilities under the stability re-

quirement defines a linear programming problem. It is closely related by

duality to another linear optimization problem, which maximizes the total

surplus under the feasibility (scarcity) constraints. The maximization of the

total surplus, whose decision variables are the quantities traded, is tradi-

tionally called the primal, while total utility minimization under stability

constraints, whose decisions variables are prices, is called the corresponding

dual. The Duality Theorem for linear programming implies that the prices

(and utilities) that solve the dual are the Lagrange multipliers associated
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with the feasibility constraints of the primal, while the traded quantities that

maximize the total surplus in the primal are the multipliers of the stability

constraints in the dual.

This powerful duality result relies heavily on the assumption that utility

is perfectly transferable. It applies both in matching markets and in hedonic

markets (reinterpreting a match as an assignment of a buyer, a seller, and the

variety they trade.) As we will see, both frameworks can be interpreted as an

optimal transportation problem whose solution yields the equilibrium prices,

trades and utilities in the hedonic market, and the equilibrium matches and

utilities in the matching market.

Section 1 derives more rigorously this relationship between hedonic equi-

librium and stable matchings when utility is perfectly transferable. We start

with some recent results in classic one-sided discrete choice problems; then

we use them to analyze hedonic equilibria and stable matchings.

In most empirical work, the analyst only observes part of the informa-

tion that is available to the agents. We will assume in this chapter that all

agents are perfectly informed of all that is payoff-relevant to them. On the

other hand, the econometrician only has access to a more limited set of vari-

ables; the rest is unobserved heterogeneity. In hedonic markets, it consists

of unobserved characteristics of products, and how they enter the buyers’

preferences and the sellers’ costs. In matching markets, some characteris-

tics of the partners are unobserved, as are idiosyncratic components of their

preferences.

The explicit incorporation of unobserved heterogeneity into our models

increases their plausibility by allowing agents who are indistinguishable from
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the econometrician’s point of view to make different choices. It brings in new

problems, however. Even in one-sided choice problems, little progress can

be made without restricting the specification of unobserved heterogeneity.

This difficulty is magnified in two-sided markets. Our chapter adopts the

dominant approach in this field, which assumes a form of separability in the

way observed and unobserved characteristics interact in payoff functions.

Section 2.2.1 defines separability and the restrictions it entails: it rules out

interactions between unobserved characteristics in the surplus of a trade (or

a match). It still allows for “matching on unobservables” in a restricted

sense, as well as unrestricted matching on observable characteristics.

The great value of separability lies in that it greatly enhances the tractabil-

ity of this class of models. As we will see, it takes us from the realm of linear

programming to convex programming. Moreover, in large markets the ob-

jects of interest are strictly convex and smooth, unlike the piecewise linear

world of linear programming3. This allows us to apply the powerful tools of

convex analysis. In particular, utilities (or prices) and matches (or trades)

are linked in a bijective manner by convex duality.

Convex duality should be familiar to anyone who took a graduate mi-

croeconomics class, in the form of Shephard’s Lemma in consumer theory

or Hotelling’s Lemma in producer theory. In demand systems and in he-

donic and matching markets, it yields simple identification formulæ. These

formulæ, which we derive in Section 2, allow the analyst to recover the

underlying utility functions and/or the joint surplus from observed data.

Several methods can be used to estimate and test these models, most

3For a visual analogy, imagine going from a polygon to a circle.
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of them directly inspired by the identification formulæ. We describe non-

parametric and parametric estimators in Section 3, along with extensions

to more complex matching markets. We also summarize there some of the

main empirical applications.

Computational issues loom large in this field, especially in the context

of parametric estimation. Section 4 builds on the connections we estab-

lished with well-tested methods in applied mathematics; it shows how to

adapt existing algorithms to solve for equilibrium in hedonic and matching

markets.

While the past decade has seen remarkable progress in both methods

and applications in this subfield, many issues remain unresolved. We end

this chapter with promising research directions as we see them.
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Chapter 1

Specification

Hedonic and matching models are two-sided equilibrium models, where

agents on each side have preferences. Nevertheless, we start in this section

with only one side of a hedonic market. This will allow us to introduce the

objects and methods that lie at the core of our approach to two-sided mar-

kets: linear programming, optimal transport, and duality. We then show

how when utilities are quasi-linear, hedonic equilibrium breaks down into

two simple one-sided problems. This extends to bipartite matching mar-

kets when utility is perfectly transferable, provided that the joint surplus

is separable. We conclude with an extension to matching with imperfectly

transferable utility.

A word on notation: we denote a measure ν on a set S as ν(ds). This

allows us to deal both with discrete and with continuous sets, as for any

measurable subset T of S,

ν(T ) =

∫
11(s ∈ T ) ν(ds).

17
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If ν has a density f in s, then ν(ds) = f(s)ds; if ν has a mass p at t, then

locally ν(ds) = pδtds, where δt(s) = δ(s− t) and δ is the Dirac mass.

1.1 One-sided choice

As in the introduction, each agent chooses which variety of a good to pur-

chase or sell. To simplify the exposition, we will focus on buyers choosing

a “product,” as in much of the empirical industrial organization literature.

Our results apply equally well to the other side of the market (sellers decid-

ing which varieties they will produce).

Both agents and products are heterogeneous. Each buyer has a full

type which we denote x̃. The econometrician knows that x̃ is distributed

according to a measure ñ (dx̃) on a set X̃ . In addition, she observes a part of

the full type x̃ which we call the observed type x. Without loss of generality,

we will often write x̃ = (x, ε) where ε is a random variable with a conditional

distribution that derives from ñ(dx̃|x); and we denote n(dx) the distribution

of the observed type x over its set of possible values X .

We will assume in this section that each product’s characteristics are

fully observed by the econometrician: it takes a value z in a set Z. The set

Z of alternatives is typically a subset of a finite-dimensional vector space.

It is often discrete, and even finite: the buyer may opt for an apple or for a

pear. Sometimes it is better to model it as continuous, as with the square

footage of a house.

The price of a product of full (and observed) type z is P (z); the prices

of all products that have non-zero market share are fully observed by the



1.1. ONE-SIDED CHOICE 19

econometrician. There usually is a “zero option”; we denote it as 0, and we

assume that P (0) = 0. All agents take the price function as given.

In some contexts, it would be useful to allow the quantity of variety z

to take other values than zero or one. Formally, we could redefine z to be a

vector of quantities, one for each variety. Again depending on the context,

the price function might be required to be linear in quantities. In a further

extension, each seller could be allowed to produce several varieties. While we

will not pursue these extensions here, Section 3.2.3 considers corresponding

variants of the matching model; see also Section 4.1 for a reinterpretation

in terms of flows on a network.

1.1.1 Utility and demand

Let U (x̃, z, p) denote the net utility of a buyer x̃ if he purchases product z at

a price p. U (x̃, z, p) is generally assumed to be continuous, and decreasing

in p. In leading applications, its variations are restricted further. We now

turn to four classic examples.

Example 1 (Additively separable Random Utility). In this setting, addi-

tively separable random utility (ARUM) rules out interactions between the

price p and the unobserved type of the buyer. This translates into

U (x̃, z, p) ≡ V (x, z, p) + ζ(x̃, z). (1.1)

The reason for this restriction will become clear when we discuss identifica-

tion of hedonic demand models in Section 2.1.
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Example 2 (Quasilinear Utility). In the quasilinear case, the marginal util-

ity of money is constant and identical for all buyers:

U (x̃, z, p) ≡ Ū (x̃, z)− p. (1.2)

Note that it is also additively separable as in Example 1, as the disutility of

p is constant.

Example 3 (Logit case). Suppose that Z is discrete and ε is a vector

of iid Gumbel variables, distributed independently of x. Let Ũ (x̃, z, p) =

U (x, z) − p + εz. This defines the multinomial logit discrete choice model;

it is quasilinear and therefore additively separable.

Example 4 (The Tinbergen model). An alternative subcase of Example 2

is the quadratic-in-characteristics case in which

U (x̃, z, p) ≡ z′a (x) + z′Bz/2− p+ z′ε, (1.3)

where a(x) is a vector function, B is a symmetric matrix, and x̃ = (x, ε).

This model was pioneered by Tinbergen (1956); its properties are ana-

lyzed by Epple (1987) and Ekeland, Heckman, and Nesheim (2004). It allows

the marginal willingness to pay for a characteristic

a(x) +Bz + ε

to vary with the full type of the buyer via a(x) and ε, and to depend on z

itself (uniformly across buyers).
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1.1.1.1 Individual Demand

Faced with the price function P (·), the buyer will purchase a product that

maximizes U (x̃, z, P (z)) over z ∈ Z. Equivalently, let π̃D (dz|x̃;P ) denote

the conditional choice probability of a buyer of type x̃ over the products in

Z given the price function P . The support of this measure must be included

in the set of maximizers over z, which we denote ZD(x̃;P ):

supp π̃D (·|x̃;P ) ⊆ ZD (x̃;P ) ≡ argmax
z∈Z

U (x̃, z, P (z)) . (1.4)

While this formulation may seem abstract, it will have clear advantages

when we aggregate over buyers and especially when we move to equilibrium

models in Section1.2.

1.1.1.2 Aggregate Demand

In empirical applications, the data often only contains the sum of the in-

dividual demands of all consumers of a given observed type x for a price

function P . Now consumer behavior, as represented by the choice probabil-

ity π̃D(·|x̃;P ), transports the distribution of the full types x̃ of this subset

of buyers to a measure on the space Z. This measure is simply

πD(dz|x;P ) =
∫
X̃
π̃D(dz|x̃;P ) ñ(dx̃|x). (1.5)

Since the econometrician can only observe the subtypes x of the buyers, the

data will only inform her on this set of conditional measures πD. We call πD

the conditional demand associated with the price function P . Integrating
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over x gives the aggregate demand qD:

qD(dz;P ) =

∫
X
πD(dz|x;P ) n(dx). (1.6)

To summarize:

Definition 1 (Aggregate Demand). A hedonic demand side (U, ñ) consists

of a set of preferences U and a distribution ñ over full types of buyers. For

any given price function P , it generates three measures over Z:

• the individual demand π̃D(·|x̃;P ),

• the conditional demand πD(·|x;P ) as in (1.5),

• and the aggregate demand qD(·;P ) as in (1.6).

1.1.1.3 Differentiable Models

The differentiable case is of particular interest. Assume that Z is an open

subset of Rd, that U (x̃, z, p) is continuously differentiable with respect to z

and p, and that the price function P (·) is also continuously differentiable.

Then the function z → U(x̃, z, P (z)) is also continuously differentiable on

Z. Its interior maxima must satisfy the first order conditions

∇zU (x̃, z, P (z)) +
∂U

∂p
(x̃, z, P (z))∇P (z) = 0. (1.7)

If the set ZD(x̃;P ) is a singleton {zD(x̃;P )} for all buyers of observed
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type x, then the conditional demand is given by

πD (B|x;P ) =
∫
X̃
11 (z (x̃;P ) ∈ B) ñ (dx̃|x)

for any measurable set B ⊆ Z.

Example 2 (continued) In the quasilinear model, assume that Z = Rd

and Ū (x̃, z) is continuously differentiable with respect to z. The first order

conditions (1.7) equalize marginal utilities of characteristics and (marginal)

prices:

∇zŪ(x̃, z) = ∇P (z).

Example 4 (continued) In the quadratic-in-characteristics Tinbergen

model, equation (1.7) becomes

a (x) +Bz + ε = ∇P (z) .

Under appropriate conditions, this defines ZD(x̃;P ). The set of buyers who

choose products in a set B is

{x̃ = (x, ε) | a(x) + ε = ∇P (z)−Bz for some z ∈ B} .

1.1.2 The Quasilinear Case

We assume in this subsection that utilities are quasi-linear, as in Example 2:

U(x̃, z, p) = Ū(x̃, z)− p.
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We already used the idea that given a price function P , consumer behavior

“transports” the distribution of consumer types ñ over X̃ into a distribution

of aggregate hedonic demand qD(·;P ) over Z. It does so via the individual

demand π̃D(·|·;P ); this defines a joint measure

µD(dx̃, dz;P ) = π̃D(dz|x̃t;P ) ñ(dx̃)

over the product space X̃ × Z. By construction, the marginal distributions

of µD(·, ·;P ) over X̃ and Z are ñ and qD(·;P ). As the set of joint measures

with given margins will play a central role in this chapter, we introduce a

notation for it:

Definition 2 (Joint measures with given margins). Let A and B be two

measurable spaces. For any two positive measures a on A and b on B, we

denote M(a, b) the set of positive measures on A×B with margins a and b.

The set M (a, b) is clearly non-empty and convex; beyond that, it can

be very high-dimensional. If for instance A and B are subsets of the real

line, each choice of copula would generate an element of M (a, b). In the

hedonic demand model, µD(·, ·;P ) ∈ M
(
ñ, qD(·;P )

)
is generated by the

buyers’ choices of products for a given price function P .

1.1.2.1 Allocative efficiency

The concept of a Product (with a capital P) will prove useful here. A Prod-

uct z has a utility p if it is bought at a price p. In the quasilinear case,

utility is perfectly transferable between the buyer x̃ and the Product z. As

the buyer gets net utility Ū(x̃, z) − P (z) and the Product gets a (virtual)
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utility of P (z), the transaction generates a virtual surplus of Ū(x̃, z). Inte-

grating over any joint distribution µ over X̃ × Z yields an aggregate virtual

surplus1

W(µ) ≡
∫
X̃×Z

Ū(x̃, z)µ(dx̃, dz).

In economic terms, the choice of µ realizes an assignment of objects z

to buyers x̃. This must respect two scarcity constraints: the distribution of

buyers, and the distribution of the characteristics of the Products. These two

constraints define feasible measures µ. Given perfectly transferable utility,

allocative efficiency requires that the assignment maximize the aggregate

virtual surplus over all feasible joint measures.

Now suppose that we are given a family of preferences Ū , a distribution

of full types of buyers ñ, and a distribution of product characteristics q on

Z. Feasibility requires that each buyer x̃ trade one Product: µ(dx̃,Z) ≡

ñ(dx̃); and that each Product z be traded exactly once: µ(X̃ , dz) ≡ q(dz).

These constraints are equivalent to the requirement that µ ∈ M(ñ, q). By

integration, they imply that ñ and q have the same total mass: q(Z) = ñ(X̃ ).

This discussion shows that given Ū , ñ, and q such that q(Z) = ñ(X̃ ), the

efficient allocations solve the following program:

max
µ

∫
X̃×Z

Ū(x̃, z)µ(dx̃, dz) (1.8)

s.t. µ ∈ M (ñ, q) .

This is the primal formulation of an optimal transport problem with surplus

1Assuming that Ū(x̃, ∅) = P (∅) = 0.
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Ū and with margins (ñ, q). Box 1.1 gives a brief introduction to optimal

transport; we will only use elementary results.

Note that the primal program is isomorphic to a house matching prob-

lem: reinterpret each Product as a house, and Ū(x̃, z) as the housing utility

that buyer x̃ gets from a house with characteristics z. Allocative efficiency

requires that houses be allocated to buyers in a way that maximizes total

housing utility.

We not only seek to determine a joint measure µ that achieves allocative

efficiency; we also want to find a price function P that supports it, in the

sense that

µ(dx̃, dz)

ñ(dx̃)
≡ π̃D(dz|x̃;P ) :

the conditional demand under P coincides with the measure µ. The duality

theorem of optimal transport gives us the solution. It states that under

minimal conditions, the value of the primal program coincides with that of

the dual program:

min
ũ,P

∫
X̃
ũ(x̃)ñ(dx̃) +

∫
Z
P (z)q(dz) (1.9)

s.t. ũ(x̃) + P (z) ≥ Ū(x̃, z),

where the inequality must hold for all (x̃, z). Moreover, the multipliers of

the constraints in the primal problem solve the dual problem, and vice versa.

The intuition of this result is simple. Remember that the feasibility
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constraint µ ∈ M(ñ, q) requires that

µ(dx̃,Z) = ñ(dx̃) for all x̃

µ(X̃ , dz) = q(dz) for all z.

Let ũ(x̃) (resp. P (z)) be the Lagrange multipliers for the first (resp. the

second) line of constraints. Since µ cannot be negative, the Karush-Kuhn-

Tucker (KKT) conditions imply that

Ū(x̃, z) ≤ ũ(x̃) + P (z),

with equality where µ(dx̃, dz) > 0. This is just saying that the net utility

of the buyer of any product z, which equals Ū(x̃, z) − P (z), cannot exceed

ũ(x̃); and that it must equal it if the buyer does end up with this product.

More succinctly, ũ(x̃) = maxz∈Z(Ū(x̃, z)−P (z)) is attained on the support

of µ. If the price function is P , we end up with an efficient allocation at

which the net utilities of buyers are given by the function ũ.

Conversely, denote µ the multipliers for the inequalities that constrain

the dual. The KKT conditions imply ñ(dx̃) =
∫
z∈Z µ(dx̃, dz) and q(dz) =∫

x̃∈X̃ µ(dx̃, dz); that is, µ ∈ M(ñ, q). Moreover, the inequality must be

binding on the support of µ:

ũ(x̃) = max
z∈Z

(Ū(x̃, z)− P (z))

and the maximum is attained on the support of µ. Therefore the solutions

to the dual and their multipliers coincide with, respectively, the multipliers
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and the solutions of the primal.

1.1.2.2 Assortative Matching

As Becker (1973) showed, allocative efficiency in itself may have strong con-

sequences on matching patterns. Assume that X̃ and Z are subsets of the

real line, and that the surplus U is strictly supermodular: if x̃′ ≥ x̃ and

z′ ≥ z with at least one strict inequality, then

U(x̃′, z′) + U(x̃, z) > U(x̃, z′) + U(x̃′, z).

This would be natural if for instance z is a quality index and x̃ measures a

preference for higher quality. Then any µ that is allocatively efficient must

be positively assortative: higher-x̃ buyers are assigned higher-z products. To

see this, suppose for instance that ñ and q have no mass point2. Then any

feasible µ has a density; denote it m. Suppose that x̃′ > x̃, that m(x̃, z) > 0,

and that (contrary to positively assortative matching) buyer x̃′ buys a lower-

tier product z′ < z with positive probability: m(x̃′, z′) > 0. Letting m > 0

be the minimum of m(x̃, z) and m(x̃′, z′), move a density m from (x̃, z) to

(x̃′, z), and the same m from (x̃′, z′) to (x̃, z′). The resulting joint measure

is non-negative and is still feasible as the marginal densities are preserved.

The total surplus changes by

m×
(
Ū(x̃′, z) + Ū(x̃, z′)− Ū(x̃, z)− Ū(x̃′, z′)

)
,

2The proof is essentially unchanged when they have discrete support.
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The generic optimal transport problem is defined by two measures F on a
set A and G on a set B, and a surplus function R from A × B to R. It
consists in maximizing the integral∫

A×B
R(a, b)H(da, db) (1.10)

over all joint measures H with margins F and G—that is, H ∈ M(F,G).
This is a linear programming problem, whose dual consists of finding real-
valued functions ϕ and ψ that minimize∫

A
φ(a)F (da) +

∫
B
ψ(b)G(db) (1.11)

subject to the constraint φ(a) + ψ(b) ≥ R(a, b).
Under suitable assumptions on the surplus function R, both the primal
problem (1.10) and the dual (1.11) have solutions, and their values coincide.
Moreover, complementary slackness holds: if H ∈ M(F,G) and φ(a) +
ψ(b) ≥ R(a, b), then H and (φ,ψ) are respectively solutions to the primal
and the dual problems if and only if H assigns probability one to the set of
(a, b) values such that φ(a) + ψ(b) = R(a, b).
When A and B are finite sets of respective sizes I and J , the problem boils
down to finding a vector Hij ≥ 0 which maximizes

∑I
i=1

∑J
j=1RijHij under

the constraints

J∑
j=1

Hij = Fi for i = 1, . . . , I, and
I∑

i=1

Hij = Gj for i = j, . . . , J.

It is a finite-dimensional linear programming problem, whose dual consists
in minimizing

∑I
i=1 Fiφi+

∑J
j=1Gjψj subject to ϕi+ψj ≥ Rij for all i and

j. As is well-known, the primal problem has a solution, which is generically
unique; the dual problem has a set of solutions that is defined by a system
of linear inequalities.
If A and B are not finite sets, the existence and uniqueness of a solution are
not as straightforward: in fact, the original instance of the optimal trans-
portation problem in Monge (1781) was not fully solved until the 1980s.
There is a rich mathematical literature on the topic. For a standard refer-
ence on the mathematical theory of optimal transport, see Villani (2003); for
a more accessible introduction to the topic and its applications to economics,
we refer the reader to Galichon (2016). We discuss various numerical solu-
tions of the optimal transport problem in section 4.2.1.

Box 1.1: The optimal transport problem
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which is positive since x̃′ > x̃, z′ < z, and Ū is strictly supermodular. It

follows that µ cannot be allocatively efficient.

One can go further: the support of the allocatively efficient µ is the

graph of the strictly increasing map z = T (x̃) defined by ñ([x̃,∞) ∩ X̃) =

q([z,∞) ∩ Z). If we denote Ñ and Q the cumulative distribution functions

of ñ and q, this is simply the equality Ñ(x̃) = Q(z); and T = Q−1 ◦ Ñ .

1.1.2.3 An Equivalence Theorem for One-sided Choice

To summarize our results so far, consider a given population of buyers. If

a buyer of type x̃ decides to purchase a product of type z, then (x̃, z) is

in the support of the allocatively efficient µ, which solves program (1.8).

Conversely, if µ is allocatively efficient (it solves the optimal transport prob-

lem (1.8)), then there exists a function P such that µ is generated by the

hedonic demand associated with price function P . Moreover, the function

P , along with ũ(x̃) = maxz∈Z(Ū(x̃, z)−P (z)), solves the dual program (1.9).

More formally, we state the following theorem, which adapts results

in Galichon and Salanié (2022):

Theorem 5 (Equivalence Theorem for Quasilinear One-sided Choice). Fix

the distribution of buyer characteristics ñ and a family of quasilinear pref-

erences Ū for these buyers, and consider a price function P .

Let π̃D(dz|x̃;P ) be the individual demand of buyer x̃ for the price func-

tion P and qD(dz;P ) the corresponding aggregate demand, as defined in

paragraph 1.1.1.2. Define ũ(x̃) = maxz∈Z
{
Ū(x̃, z)− P (z)

}
, the indirect

utility of consumer x̃ under P . Then
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(i) The joint measure µ(dx̃, dz) := π̃D(dz|x̃;P )ñ(dx̃) solves the primal op-

timal transport problem (1.8) with surplus Ū and margins (ñ, qD(·;P )).

(ii) The pair (ũ, P ) solves the dual optimal transportation problem (1.9),

and the aggregate surplus and the sum of utilities (indirect buyer util-

ities and virtual Product utilities) coincide:

∫
X̃×Z

Ū(x̃, z)µ(dx̃, dz) =

∫
X̃
ũ(x̃)ñ(dx̃) +

∫
Z
P (z)q(dz). (1.12)

(iii) Conversely, take any measure q on Z with total mass q(Z) = ñ(x̃).

If µ ∈ M(ñ, q) solves the primal optimal transport problem (1.8) and

(ũ, P ) solves the corresponding dual (1.9), then the conditional distri-

bution µ(·|x̃) coincides with the individual demand π̃D(·|·;P ) for the

price function P , and q is the aggregate demand qD(·;P ).

Theorem 5 relies on the Monge–Kantorovich duality theorem, which is

fundamental in the theory of optimal transport. Note that the dual prob-

lem can be formulated in terms of the price function P only: the P that

rationalizes a distribution q on product characteristics Z must minimize

∫
X̃
max
z∈Z

(U(x̃, z)− P (z)) ñ (dx̃) +

∫
Z
P (z) q (dz) . (1.13)

Example 3 (continued) To illustrate these results, let us return to

the logit example. Given a price function P , standard formulæ give the

conditional demand of buyers of observed type x:

πD(z|x;P ) = exp(Ū(x, z))∑
z′∈Z exp(Ū(x, z′))
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and their “inclusive value” is

E (ũ(x̃)|x) =
∫
ε∈RZ

max
z∈Z

{
Ũ (x, ε, z)− P (z)

}
ñ (dε|x) = log

∑
z∈Z

exp (U (x, z)− P (z)) .

Taking expectations over x and substituting in (1.13) implies that the price

function P that rationalizes a product distribution q minimizes

∫
x∈X

n (dx) log

(∑
z∈Z

exp (U (x, z)− P (z))

)
+
∑
z∈Z

P (z) q (z) .

The first order conditions yield the usual formulæ for aggregate demand

under P :

q (z) = qD(z;P ) =

∫
x∈X

n (dx)
exp (U (x, z)− P (z))∑

z′∈Z exp (U (x, z′)− P (z′))
.

1.1.3 Beyond the Quasilinear Case

If the buyer’s utility U(x̃, z, p) is not additive in p, we cannot define the

joint surplus from a trade and allocative efficiency loses its appeal. It is still

possible to characterize hedonic demand (Bonnet, Galichon, Hsieh, O’hara,

and Shum, 2022).

Given a price function P , buyer x̃ maximizes U(x̃, z, P (z)) and attains

utility ũ (x̃) = maxz∈Z U (x̃, z, P (z)). This leads as before to a joint distri-

bution

µ(dx̃, dz) := π̃D(dz|x̃;P ) ñ(dx̃)

over buyers and purchased products. Let q = qD(·;P ) denote the aggregate

demand distribution of the purchased products. These three objects (µ, ũ, q)
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are linked by the following conditions:


µ ∈ M (ñ, q)

ũ (x̃) ≥ U (x̃, z, P (z)) for all x̃ ∈ X̃ and z ∈ Z

If ũ(x̃) > U (x̃, z, P (z)) , then (x̃, z) is not in the support of µ.

Conversely, if the triple (µ, ũ, P ) satisfies these three conditions, it can

be shown that µ(·|x̃) coincides with the individual demand π̃D(·|·;P ) and q

is the aggregate demand qD(·;P ) for the price function P .

From a mathematical point of view, this is an equilibrium transport prob-

lem; in the notation of Box 1.2, we have ϕ = ũ, ψ = P , and S(x̃, z, p, q) =

p− U(x̃, z, q).

1.2 Hedonic Equilibrium

We now bring together supply and demand. The modeling of the supply

side mirrors that of the demand side. Each seller has a full type ỹ ∈ Ỹ and

derives a utility (or profit) V (ỹ, z, p) of selling an object of characteristics z

at price p. Given a price function P , the individual supply of seller ỹ is the

conditional probability πS (·|ỹ;P ). The support of this distribution is the

set of maximizers of the seller’s utility:

supp(πS (·|ỹ;P ) ⊆ argmax
z∈Z

V (ỹ, z, P (z)) ≡ ZS(ỹ;P ).
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We start from the same notation as in Box 1.1. Let p and q denote the
“payoffs” of a and b. Payoffs p and q are feasible if S(a, b, p, q) ≤ 0, where
S is a function that is increasing in p and in q. We interpret this inequality
as constraining the transfers between types a and b if they are matched.
More precisely, (H,φ, ψ) solves the equilibrium transport problem defined
by (F,G, S) iff

1. H ∈ M (F,G)

2. S(a, b, φ(a), ψ(b)) ≥ 0 for all a ∈ A, b ∈ B

3. PrH (S(a, b, φ(a), ψ(b)) = 0) = 1.

As noted in Galichon (2016, Definition 10.1), optimal transport is the special
case where

S(a, b, p, q) = p+ q −R(a, b). (1.14)

Box 1.2: The equilibrium transport problem

Let m̃ denote the measure over full types ỹ. The hedonic supply for prices

P is the joint measure µS over seller and product characteristics given by

µS (dỹ, dz) ≡ πS (dz|ỹ;P ) m̃ (dỹ) ,

and its margin over Z is the aggregate supply qS(·;P ).

Proceeding as with hedonic demand, we know that the joint measure µS

has margins qS(·|P ) and m̃, and that its support only includes pair (x̃, z)

such that z ∈ ZS(ỹ;P ). The definition of hedonic equilibrium for utility

functions U and V and distributions of full types ñ and m̃ follows directly.



1.2. HEDONIC EQUILIBRIUM 35

1.2.1 Definition

Definition 3. A hedonic equilibrium is given by a price function P , a he-

donic demand µD, and a hedonic supply µS such that:

1. the margin of µD on X̃ is ñ:
∫
z∈Z µ(dx̃, dz) = ñ(dx̃);

2. the margin of µS on Ỹ is m̃:
∫
z∈Z µ

S(dỹ, dz) = m̃(dỹ);

3. the margins of µD and µS on Z coincide:

∫
x̃∈X̃

µ(dx̃, dz) =

∫
ỹ∈Ỹ

µS(dỹ, dz);

4. each buyer x̃ consumes their preferred product given P :

the support of µD(·|x̃;P ) is contained in ZD(x̃;P )

5. each seller ỹ supplies their preferred product given P :

the support of µS(·|ỹ;P ) is contained in ZS(ỹ;P ).

The common margin referred to in definition 3 is the distribution q(·;P )

of the characteristics of products traded in equilibrium. By construction,

q(·;P ) = qD(·;P ) = qS(·;P ).

When utilities on both sides of the market are quasilinear, we can apply

Theorem 5 to demand and to supply separately. We could pick a price

function P and solve the two primal problems to obtain qD(·;P ) and qS(·;P ).

Alternatively, we could choose a measure q such that q(Z) = ñ(x̃) = m̃(ỹ),

and solve the two dual problems to obtain price functions PD and PS .

Equilibrium obtains in the first approach when qS and qD coincide; in the

second approach, it is achieved when PD and PS coincide.
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To put it differently: a hedonic market brings together two one-sided

matching problems—one between buyers and Products, and one between

sellers and Products. Either matching problem generates a relationship

between a measure of Products traded and a price function; equilibrium

obtains when these objects are the same in the two matching problems3.

1.2.2 Solving the Quadratic Example

To illustrate this, let us consider a simple instance of the quadratic model of

Example 4. To simplify it even further, we assume that buyers and sellers

only have a scalar, unobserved type: x̃ is simply ε and ỹ is η. We assume

that the masses of buyers and sellers both equal one and we denote their

cdfs as Fε and Fη. We write the utility functions as respectively U (ε, z, p) ≡

εz +Bz2/2− p and V (η, z, p) ≡ ηz + Cz2/2 + p.

For any given price function P , buyer ε chooses a product zD(ε) that

solves ε + Bz = P ′(z), and seller η chooses a product zS(η) that solves

η+Cz = −P ′(z). The second-order conditions imply that B < P ′′(z) < −C.

Given the complementarity of type and product, both zD and zS are

increasing functions; as a consequence, so is the function η = M(ε) that

matches a seller to a buyer. Moreover, we can eliminate the marginal price

from the definitions of zD and zS to obtain M(ε) = −ε− (B + C)zD(ε).

Hedonic equilibrium is achieved for a price function P that induces a

3As we will explain in Section 4.1, this connection between hedonic equilibrium models
and matching models can also be seen by viewing them as instances of network flow
problems.
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matching M = (zS)−1 ◦ zD such that

Fη(M(ε)) = Fε(ε) for all ε. (1.15)

To simplify this even more, we now assume that Fε and Fη belong to the

same location-scale family of distributions, so that Fη(t) ≡ F ((t−m)/σ) for

some m and σ. Then (1.15) holds if and only if M(ε) ≡ m+ σε. If follows

that

zD(ε) = −M(ε) + ε

B + C
= −m+ (σ + 1)ε

B + C
.

Changing variables again, we obtain z = −(m+(σ+1)(P ′(z)−Bz))/(B+C)

and finally

P ′(z) =
(Bσ − C)z −m

σ + 1
.

so that the equilibrium price function is quadratic. Its level depends on the

value of the outside options.

The dual approach builds on (1.13): the equilibrium trade measure q on

Z must be such that the same price function P minimizes both

∫
max
z∈Z

(
zε+Bz2/2− P (z)

)
Fε(dε) +

∫
P (z)q(dz)

and ∫
max
z∈Z

(
zη + Cz2/2 + P (z)

)
Fη(dη)−

∫
P (z)q(dz).

Now consider an infinitesimal variation δP (z) in the price function. By the

envelope theorem, it contributes −δP (zD(ε)) to each maxz∈Z in the first

problem, and δP (zS(η)) to each maxz∈Z in the second problem. In the end,
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both

−
∫
δP (zD(ε))Fε(dε) +

∫
δP (z)q(dz)

and ∫
δP (zS(η))Fη(dη)−

∫
δP (z)q(dz)

must be approximately zero for each such price variation. This can only

happen if at each z = zD(ε) = zS(η) we have −Fε(dε) + q(dz) = 0 =

Fη(dη)− q(dz). Since ε = P ′(z)−Bz and η = −P ′(z)− Cz,

dε = (P ′′(z)−B)dz and dη = −(P ′′(z) + C)dz.

Under our assumption that Fη(t) ≡ Fε((t−m)/σ)), we must have

P ′′(z)−B ≡ −P
′′(z) + C

σ
.

Therefore P ′′ is a constant and the equilibrium function must be quadratic.

It is easy to check that the leading coefficient is the same as in the primal

approach.

1.3 Two-sided matching models

The results in the previous section readily adapt to the matching model

of Becker (1973) and Shapley and Shubik (1972): the one-to-one bipartite

matching market with perfectly transferable utility. The term “bipartite”

here means that (just as with a trade in the hedonic market) the two partners

in a match are drawn from separate subpopulations of agents. Since Becker’s
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original application was to the marriage market, we follow tradition and we

refer to potential partners as “men” and “women”4.

1.3.1 Preliminaries

We use the same notation for the agents as with hedonic markets: a man

has full type x̃ = (x, ε) and a woman has a full type ỹ = (y, η). We will often

use the shortcut x̃ ∈ x, say, to state that a man of type x̃ has observable

type x. We assume that each man, and each woman, observes their own full

type and the full type of any potential partner.

A match can be three things: a couple (x̃, ỹ); a single man x̃; or a single

woman ỹ. It will be convenient to denote X̃0 = {0} ∪ X̃ and Ỹ0 = {0} ∪ Ỹ,

where 0 applies to singles (“matched with 0”). We define X0 and Y0 in the

same way. A matching is a joint measure over the set Ã =
(
X̃0 × Ỹ

)
∪(

X̃ × Ỹ0

)
. It is feasible if the margins of the joint measure do not excess ñ

and m̃ respectively.

Transfers within a match are costless, unlimited, and have a constant

marginal utility of 1 for each partner. As a consequence, utilities within

a match are only required to add up to a number which we call the joint

utility : if a match between a man of full type x̃ and a woman of full type

ỹ forms, then their respective utility levels Ũ and Ṽ need only satisfy the

constraint

Ũ + Ṽ = Φ̃(x̃, ỹ).

Let us denote Φ̃(x̃, 0) (resp. Φ̃(0, ỹ)) the utility man x̃ (resp. woman ỹ) would

4We assume here that marriages are heterosexual and monogamous. We will discuss
same-sex marriage and more generally non-bipartite models in Section 3.2.3.3.
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attain if single. The joint surplus created by this match is the excess of the

joint utility over the sum of the utilities the man and the woman achieve as

singles:

S̃(x̃, ỹ) = Φ̃(x̃, ỹ)− Φ̃(x̃, 0)− Φ̃(0, ỹ).

Any match must guarantee to each partner as much utility as they could

obtain on their own or with an alternative, willing partner. Consider any

other woman, of full type ỹ′, and denote ṽ(ỹ′) the utility she obtains in her

current match. To match her, man x̃ must leave to her at least a utility

ṽ(ỹ′). As a consequence, a x̃ man cannot obtain more than Φ̃(x̃, ỹ′)− ṽ(ỹ′)

with this alternative partner. If

Ũ ≥ max
ỹ′

(
Φ̃(x̃, ỹ′)− ṽ(ỹ′)

)
,

then man x̃ has no incentive to look for a different partner than woman ỹ.

Denoting ũ(x̃) the utility he gets from his match, this can be written more

symmetrically as ũ(x̃)+ ṽ(ỹ′) ≥ Φ̃(x̃, ỹ′). As this must apply to all potential

partners on both sides, we have

ũ(x̃) + ṽ(ỹ) ≥ Φ̃(x̃, ỹ) for all (x̃, ỹ). (1.16)

In addition, no individual can obtain less utility than they would by remain-

ing single:

ũ(x̃) ≥ Φ̃(x̃, 0) for all x̃; and ṽ(ỹ) ≥ Φ̃(0, ỹ) for all ỹ. (1.17)
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This implies in particular that a match cannot form if its joint surplus is

negative, as this would make at least one of the two partners worse off than

staying single.

The set of inequalities in (1.16) and (1.17) spell out the requirements

of stability for a one-to-one, bipartite matching with perfectly transferable

utility.

To summarize:

Definition 4 (Matchings with transferable utility). A one-to-one, bipartite

matching market with perfectly transferable utility consists of two measures

ñ over X̃ and m̃ over Ỹ and a joint utility function Φ̃ from Ã = (X̃ × Ỹ0)∪

(X̃0 × Ỹ) to R.

A match is a 2-uple (x̃, ỹ) in Ã. A matching is a measure over the set Ã;

it records the frequency with which each possible pair is formed. A matching

is feasible if and only if each individual appears once and only once. It is

stable if and only if there exist two functions ũ : X̃ → R and ṽ : Ỹ → R

such that

• the inequalities (1.16) and (1.17) hold for all x̃ and ỹ;

• if the matching assigns positive mass to (x̃, ỹ) pairs, then (1.16) is an

equality;

• if the matching assigns positive mass to x̃ (resp. ỹ) remaining single,

then ũ(x̃) = Φ̃(x̃, 0) (resp. ṽ(ỹ) = Φ̃(0, ỹ)).
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1.3.2 Primal and Dual

As the notation suggests, under perfectly transferable utility we can di-

rectly transpose most of our results on one-sided discrete choice models in

section 1.1.2. To any matching µ̃, we can associate the support of the dis-

tribution µ̃, which is a subset S of Ã. A measure which is supported by S is

feasible if and only if its margins are ñ and m̃; in the notation of section 1.1.2,

µ̃ ∈ M(ñ, m̃).

By construction, to a feasible matching corresponds a feasible measure µ̃.

It generates a social welfare given by the sum of joint utilities over matches:

W(µ̃) =

∫
Ã
Φ̃(x̃, ỹ) µ̃(dx̃, dỹ). (1.18)

Just as in section 1.1.2, the measure associated to a stable matching maxi-

mizes the social welfare W over the set of feasible measures: that is, it solves

the optimal transport problem

maxW(µ̃) (1.19)

s.t.

∫
Ỹ0

µ̃(dx̃, dỹ) = ñ(dx̃) for all x̃ ∈ X̃

and

∫
X̃0

µ̃(dx̃, dỹ) = m̃(dỹ) for all ỹ ∈ Ỹ.

Let α(x̃) and β(ỹ) be the Lagrange multipliers associated to the constraints

at the optimum. If neither x̃ nor ỹ is zero, the first order conditions give

α(x̃) + β(ỹ) ≥ Φ̃(x̃, ỹ),
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with equality in the support of µ̃ — that is, when x̃ and ỹ are matched.

In addition, α(x̃) ≥ Φ̃(x̃, 0) and β(ỹ) ≥ Φ̃(0, ỹ), and these are equalities for

singles. Following Section 1.1.2, we can identify α and β to ũ and ṽ, the

utilities obtained at the stable matching.

To the primal problem (1.19), we associate the dual. It consists of min-

imizing the sum of utilities:

min

(∫
X̃
ũ(x̃)ñ(dx̃) +

∫
Ỹ
ṽ(ỹ)m̃(dỹ)

)
(1.20)

s.t. ũ(x̃) + ṽ(ỹ) ≥ Φ̃(x̃, ỹ) for all (x̃, ỹ)

and ũ(x̃) ≥ Φ̃(x̃, 0) for all x̃

and ṽ(ỹ) ≥ Φ̃(0, ỹ) for all ỹ.

It is easy to check that if (ũ, ṽ) are associated to a stable matching with

measure µ̃, then they must solve the dual program (1.20); and the Lagrange

multipliers at the minimum constitute the measure µ̃. The proofs of these

results are essentially identical to those of Section 1.1.2.

1.3.3 Separability

Remember that the available data only contains information about observed

types x and y, whose distributions are

n(dx) =

∫
ñ(dx̃|x) and m(dy) =

∫
m̃(dỹ|y).
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The econometrician can only hope to estimate the distributions n over X

and m over Y, and the joint measure

µ(dx, dy) =

∫
Ã
µ̃(dx̃, dỹ)ñ(dx̃|x)m̃(dỹ|y).

This is obviously not enough to recover the joint utility Φ̃(x̃, ỹ), unless we

restrict how the unobserved types ε and η enter Φ̃. Following Choo and

Siow (2006), most of the literature has adopted a separability assumption.

In order to introduce it, it is useful to think of the joint utility of a match

in analysis-of-variance terms. Since x̃ = (x, ε) and ỹ = (y, η), four classes of

terms may contribute to the joint utility of the match:

1. the additive terms, that do not interact x̃ and ỹ within Φ̃;

2. the terms that interact x and y;

3. the terms that interact x and ỹ, or y and x̃;

4. the terms that contain interactions between the unobserved compo-

nents ε and η.

The first group helps explain the singlehood rates across categories. As

Becker (1973) emphasized, complementarity in the joint surplus drives match-

ing patterns. Groups 2 to 4 above represent these complementarities with

more and more complexity. The assumptions and/or data required to iden-

tify these terms grow as we move from group 2 to group 4. In particular,

identifying the distribution of ε, that of η, and the form of their interaction

in the 3-way terms is very challenging5. For this reason, the literature has

5We will return to this point in Section 3.2.3.1.
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converged towards the class of models that rules out the terms in group 4.

This amounts to assuming that the joint surplus is separable, in the following

sense.

Assumption 1 (Separability in Matching Markets). The joint utility of a

match between x̃ = (x, ε) and ỹ = (y, η) is

Φ̃(x̃, ỹ) = Φ (x, y) + ζ (x̃, y) + ξ (x, ỹ) .

We normalize Φ(x, 0) = Φ(0, y) = 0 for all x and y, so that remaining

unmatched gives x̃ (resp. ỹ) a utility ζ (x̃, 0) (resp. ξ (0, ỹ)).

Here Φ (x, y) subsumes the 0-way terms and the 1-way terms, while

ζ (x̃, y) and ξ (x, ỹ) are the 2-way terms.

Since we normalized the value of Φ to zero for singles, it represents

the part of the joint surplus that is generated by interactions between the

observable types; it will be the central parameter of interest that we seek to

estimate. We will call it the surplus function in what follows.

It is easy to imagine examples in which separability fails. If for instance

the joint utility of a match is higher when the partners share some unobserv-

able characteristic such as hair color, then separability cannot be expected

to hold. As always, the more interesting question is how damaging it is to

assume separability when it does not hold. By analogy with standard results

on omitted variables in linear models, one might hope that such misspeci-

fications would have mild consequences when the unobservable traits that

interact are distributed independently of the observable traits. Simulations

reported in Chiappori, Nguyen, and Salanié (2019) are encouraging in this
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respect. They show, in particular, that it takes large injections of this type

of non-separability to seriously bias estimates of complementarities between

observable characteristics. More generally, separability is less demanding

when using richer datasets as the set of unobservable traits shrinks.

Finally, let us note that separability is a property of the joint utility of

a match, not of the pre-transfer utilities of the partners6. While it clearly

holds if the utilities of the partners are Ū(x̃, y)− t and V̄ (x, ỹ)+ t after they

match and transfer utility t to each other, this specification is by no means

necessary7.

Separability was one of the assumptions introduced by Choo and Siow

(2006). It was named by Chiappori, Salanié, and Weiss (2017), who derived

its crucial implication for identification: it reduces the matching problem to

a much lower dimension.

Theorem 6 (Chiappori, Salanié, and Weiss (2017),Galichon and Salanié

(2022)). Under Assumption 1, there exist two scalar functions U and V

defined over A = (X × Y0) ∪ (X0 × Y), with U(x, 0) = V (0, y) = 0 for all

(x, y) ∈ X × Y, such that at a stable matching:

(i) a man of full type x̃ = (x, ε) will match with a woman of an observable

type y that maximizes U(x, y) + ζ(x̃, y);

(ii) a woman of full type ỹ = (y, η) will match with a man of an observable

type x that maximizes V (x, y) + ξ(x, ỹ);

6Which Mailath, Postlewaite, and Samuelson (2013) call the premunerations.
7It is not even necessary to adopt the perspective we used in this survey, in which we

associated ε to the man and η to the woman; see Galichon and Salanié (2022, Appendix
C.1) for an example.
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(iii) U(x, y) + V (x, y) ≥ Φ(x, y) for all (x, y), with equality if the set of

matches with partners x̃ ∈ x and ỹ ∈ y is non-empty.

Proof. Fix a stable matching and consider a man of full type x̃ = (x, ε).

Given that the women’s utilities are ṽ(·), he can choose to remain single and

get utility ζ(x̃, 0) or to form a match with a woman of full type ỹ and obtain

utility Φ̃(x̃, ỹ)− ṽ(ỹ). Therefore he will obtain utility

ũ(x̃) = max

(
ζ(x̃, 0),max

ỹ

(
Φ̃(x̃, ỹ)− ṽ(ỹ)

))
. (1.21)

The term Φ̃(x̃, ỹ)− ṽ(ỹ) can be rewritten

Φ(x, y) + ζ(x̃, y) + ξ(x, ỹ)− ṽ(ỹ)

so that

max
ỹ

(
Φ̃(x̃, ỹ)− ṽ(ỹ)

)
= max

y

(
Φ(x, y) + ζ(x̃, y)−min

ỹ∈y
(ṽ(ỹ)− ξ(x, ỹ))

)
.

The minimum in this expression only depends on x and y; let us denote it

V̄ (x, y). Then (1.21) becomes

ũ(x̃) = max

(
ζ(x̃, 0),max

y

(
Φ(x, y)− V̄ (x, y) + ζ(x̃, y)

))
.

Remember that Φ(x, 0) = 0; we can extend the function V̄ to V̄ (x, 0) = 0,

so that

ũ(x̃) = max
y∈Y0

(
Φ(x, y)− V̄ (x, y) + ζ(x̃, y)

)
. (1.22)
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A similar argument proves that

ṽ(ỹ) = max
x∈X0

(
Φ(x, y)− Ū(x, y) + ξ(x, ỹ)

)
(1.23)

with Ū(x, y) = minx̃∈x (ũ(x̃)− ζ(x̃, y)) and Ū(0, y) = 0. Now define the

functions U = Φ − V̄ and V = Φ − Ū . Then equations (1.22) and (1.23)

imply that for all x̃ ∈ x and ỹ ∈ y,

(ũ(x̃)− ζ(x̃, y)) + (ṽ(ỹ)− ξ(x, ỹ)) ≥ U(x, y) + V (x, y).

Minimizing over x̃ and ỹ gives U(x, y) + V (x, y) ≥ Φ(x, y). Finally, if x̃ and

ỹ are matched then Φ̃(x̃, ỹ) = ũ(x̃) + ṽ(ỹ) implies that U(x, y) + V (x, y) =

Φ(x, y).

The intuition of this result is straightforward. The term ζ(x̃, y) can be

seen as a contribution that x̃ brings to all matches he could establish with

women with observable type y. Just as a worker who is $1 more productive

than another in every job will get a $1 higher wage in equilibrium, a man with

a higher ζ(x̃, y) will reap its value at any stable matching that puts positive

mass on such matches. Separability is crucial here: without Assumption 1,

the contribution of any man to the joint surplus of a given match would also

depend on the unobservable traits η of the woman and this argument would

fail.

An immediate consequence of Theorem 6 is that if we know the functions

U and V for a stable matching, then we can solve two independent discrete
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choice problems:

ũ(x̃) = max
y∈Y0

(U(x, y) + ζ(x̃, y)) (1.24)

and

ṽ(ỹ) = max
x∈X0

(V (x, y) + ξ(x, ỹ)). (1.25)

The values of these problems are the utilities the individuals obtain at a

stable matching; and the maximizers define the observable types of their

possible equilibrium partners. This will allow us to reuse much of the tools

we discussed in Section 1.1.

Assuming separability greatly reduces the complexity of the matching

problem: our unknown now are the functions U and V , which are defined

on the space of observable types rather than on the space of full types. This

is especially valuable when types are discrete, as the problem becomes finite-

dimensional and the functions U and V can be represented by matrices. If

moreover every type of match in A occurs, then buy Theorem 6.(iii) we have

V ≡ Φ− U and the problem simplifies further.

1.3.4 Matching with imperfectly transferable utility

With perfectly transferable utility, the utilities U and V are jointly attain-

able by x̃ and ỹ if U + V ≤ Φ̃ (x̃, ỹ). This is a very specific case; if transfers

are costly, limited, or have different marginal values for the partners, we need

a more general way to describe the set of feasible utilities. We follow Gali-

chon, Kominers, and Weber (2019) and introduce the distance function for

this purpose.

Given a set F included in R2, we define the distance of a point (a, b) to
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Figure 1.3: Distance function

F as the number (positive or negative) that must be subtracted from (a, b)

on the diagonal in order to reach the set F :

DF (a, b) = min
t∈R

{t | (a− t, b− t) ∈ F} .

Given a potential match (x̃, ỹ), we denote F̃ the set of all feasible pairs

of utility claims (U, V ). Then the distance DF̃ (U, V ) is the smallest amount

of utility that must be subtracted from both prospective partner’s claims

U and V so that these claims become feasible. By construction, (U, V )

is feasible if and only if DF̃ (U, V ) ≤ 0, and DF̃ (U, V ) = 0 if and only if
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(U, V ) is on the efficient frontier of F̃ . As in Galichon, Kominers, and Weber

(2019), we make three natural assumptions about the feasible sets:

Assumption 2. Fix x̃ ̸= 0 and ỹ ̸= 0; the set F̃ of feasible payoffs for the

match (x̃, ỹ) is such that DF̃ is an admissible distance function:

(i) DF̃ is continuous on all of R2;

(ii) DF̃ is isotone: if u ≤ u′ and v ≤ v′, then DF̃ (u, v) ≤ DF̃ (u
′, v′);

(iii) Given (u, v) ∈ R2, DF̃ (u+ t, v) and DF̃ (u, v+ t) become positive for t

large enough.

The first assumption means that the feasible sets are non-empty and

closed. The second one is a free disposal property. The last one is a scarcity

requirement that ensures that one side of the relationship cannot obtain

an arbitrarily high payoff without imposing an arbitrarily high cost to the

partner on the other side. Note that if utility is perfectly transferable, all

of these assumptions hold: each set F̃ is a half plane bounded by an infinite

line with slope −1, and it is easy to see that the distance function is just the

(signed) orthogonal distance to this line: DF̃ (U, V ) = (U + V − Φ̃(x̃, ỹ))/2.

Not only is the distance function a very convenient tool to express fea-

sibility: it also defines blocking pairs. Suppose that x̃ and ỹ have pay-

offs (U, V ), and let F̃ be the set of feasible payoffs in their match. If

DF̃ (U, V ) < 0, these two individuals could form a match and achieve equal

gains of t = −DF̃ (U, V ) > 0 utils. If on the other hand DF̃ (U, V ) ≥ 0,

under Assumption 2 there is no way for them to achieve a greater utility by

forming a match.
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The following definition summarizes this discussion; it extends Defini-

tion 4.

Definition 5 (Matchings with imperfectly transferable utility). A one-to-

one, bipartite matching market with imperfectly transferable utility consists

of two full type measures ñ over X̃ and m̃ over Ỹ; utilities when single

Φ̃(x̃, 0) and Φ̃(0, ỹ); and a function d (x̃, ỹ, ũ, ṽ) from X̃ × Ỹ × R × R to R

such that for every (x̃ ̸= 0, ỹ ̸= 0) and corresponding set of feasible payoffs

F̃ , the distance function DF̃ (U, V ) ≡ d(x̃, ỹ, U, V ) is admissible.

A matching µ̃ is feasible if it has margins ñ and m̃. It is stable if and

only if there exist two functions ũ : X̃ → R and ṽ : Ỹ → R such that

• d (x̃, ỹ, ũ (x̃) , ṽ (ỹ)) ≥ 0 for all x̃ and ỹ;

• if d (x̃, ỹ, ũ (x̃) , ṽ (ỹ)) > 0, then (x̃, ỹ) is not in the support of µ̃;

• if x̃ (resp. ỹ) is single, then ũ(x̃) = Φ̃(x̃, 0) (resp. ṽ(ỹ) = Φ̃(0, ỹ)).

The separability assumption of paragraph 1.3.3 can be extended to the

imperfectly transferable context.

Assumption 3. The function d of Definition 5 is separable if and only

if there exists a family of admissible distance functions (Dxy)x ̸=0,y ̸=0 and

functions ζ (x̃, y) and ξ (x, ỹ) such that for all x̃ ∈ x ̸= 0, ỹ ∈ y ̸= 0 and

corresponding set of feasible payoffs F̃ , the distance function DF̃ satisfies

the identity

DF̃ (U, V ) = Dxy (U − ζ (x̃, y) , V − ξ (x, ỹ)) .
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To illustrate these concepts, let us suppose that in a (x̃, ỹ) match, the

efficient boundary of the set of feasible payoffs F̃ is a parameterized curve

whose shape only depends on (x, y), translated by the usual random terms:

w ∈ R → (Uxy(w), Vxy(w)) + (ζ(x̃, y), ξ(x, ỹ))

where Uxy is increasing and Vxy is decreasing. Then the model is separable.

To see this, fix (U, V ) and let t ∈ R be the solution to the scalar equation

U−1
xy (U − t) + V −1

xy (V − t) = 0. One can easily check that this t defines the

distance Dxy(U, V ) of Assumption 3.
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Chapter 2

Identification

We can now use the concepts and results in Section 1 to present identifi-

cation results. We keep the same notation throughout. Our first task is

to show how the distribution of preferences on one side of the market can

be recovered from observed choices. This leads us to introduce a new tool,

the generalized entropy, which we then use to derive identification results in

separable matching markets. Finally, we bring demand and supply together

in a hedonic market, with a variety of identifying approaches.

2.1 Identifying Demand

Let us examine the demand side of the market—the same approach ap-

plies to supply, with obvious changes. Empirical studies of demand on a

market typically seek to estimate the distribution of preferences U(x̃, z, p)

for each observed type x. We assume that the analyst observes a sam-

ple of individuals i = 1, . . . , N ; what we called in Section 1.1 their ob-

55
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served types xi; and the product zi they purchased, along with its price pi.

Given an infinite sample, this identifies, in our notation, the distribution

n(dx) of observed types, the price function z → P (z), and the distribu-

tion µD(dz|x) ≡ πD(dz|x;P ) for this price function P . A fortiori and by

integrating, we recover qD(dz) ≡
∫
µD(dz|x)n(dx).

Much of our analysis will take the set of products Z to be finite; with a

slight abuse of notation, we use the notation πD(z;x, P ) and qD(z) for the

choice probabilities in this case.

2.1.1 Buyer Choice

We start by computing the market shares associated to given utility param-

eters. When Z is finite, we will work with the set of preferences defined in

Assumption 4. This is by far the most common choice in applications; still,

we note here that it does not generalize readily when Z is infinite. We will

return to this point.

Assumption 4 (Quasilinear Preferences over a Finite Product Set).

1. Z is a finite set of products (z1, . . . , zJ);

2. the preferences of the buyers are quasilinear, as in Example 2:

U(x̃, z, p) = Ū(x, z)− p+ ζ(x̃, z);

3. conditional on x, the distribution of the random vector (ζ(x̃, zj))j=1,...,J

is a probability distribution Px on RJ ; and the vectors ζi = (ζij)j=1,...,J

are iid across all i such that xi = x.
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As part 3 of Assumption 4 may seem opaque, we now turn to a celebrated

example.

2.1.1.1 Logit demand

The most common specification adds to Assumption 4 by requiring that for

every x, the random vector ζ be drawn from a standard type I extreme value

distribution. This is simply Example 3, with slightly different notation:

Example 7 (Multinomial Logit). Suppose that the preferences of the buy-

ers satisfy Assumption 4 and that the distribution of the random vector

(ζ(x̃, zj))j=1,...,J conditional on x is i.i.d. standard type I extreme value

(also known as the Gumbel distribution). More concretely, for every buyer

i = 1, . . . , n, the values ζ(x̃i, zj) ≡ ζij for j = 1, . . . , J are iid draws from

a standard type I-EV distribution; and the vectors ζi = (ζij)j=1,...,J are iid

across i.

We already computed the corresponding choice probabilities in Sec-

tion 1.1.2: for an observed type x,

πD(zj |x;P ) =
exp(Ū(x, zj))∑J
k=1 exp(Ū(x, zk))

and the market share over the population is

qD(zj) =

∫
x∈X

n(dx)
exp(Ū(x, zj))∑J
k=1 exp(Ū(x, zk))

.
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2.1.1.2 Other quasilinear models of demand

Even within the class of quasilinear separable models, the multinomial logit

is restrictive in several ways. It imposes a parameter-free distribution; and

it does not allow for heteroskedasticity or for any form of correlation of

taste shocks across products1. In addition, it exhibits the Independence of

Irrelevant Alternatives property, which is often violated in the data.

We now return to the more general Assumption 4. Since the set of

products here is finite, we simplify notation by denoting

• ζx the random vector (ζ(x̃, zj))j=1,...,J for given x;

• µx = (µxj )j=1,...,J the vector whose j-th component is the conditional

probability µ(zj |x) that a buyer of observed type x chooses product j;

• U(x;P ) the vector formed by the (Uj(x;P ))j=1,...,J , where Uj(x;P ) ≡

Ū(x, zj)− P (zj);

• and we denote EPxf(ζ) the expectation
∫
f(ζ)Px(dζ) of f(ζ) under

Px.

A buyer of type x̃, faced with products (zj)j=1,...,J and the price function

P , will choose the product that maximizes Uj(x;P ) + ζxj . Taking expecta-

tions over ζx, buyers of observed type x obtain on average the utility

Gx(U(x;P )) ≡ EPx max
j=1,...,J

(
Uj(x;P ) + ζxj

)
.

1A multinomial probit with a flexible variance-covariance matrix would; it is much less
attractive for computational reasons, however.
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This Gx function is often called the “Emax” function, as the expectation of

the maximum utility a buyer can achieve. We will use it frequently in this

chapter. Since Gx is the expectation of a maximum of functions that are

linear in U(x;P ), it is a convex function of its arguments. As such, it has

a subgradient everywhere, and is differentiable almost everywhere. By the

classic Daly–Zachary–Williams result2, the probability that a buyer with

observed type x chooses product j is in its subgradient:

µxj ∈ ∂Gx(U(x;P )). (2.1)

In the logit case, a well-known formula gives

Gx(U(x;P )) = log

J∑
j=1

exp (Uj(x, P )) ,

which is everywhere differentiable, so that

µxj =
exp (Uj(x, P ))∑J
k=1 exp (Uk(x, P ))

, (2.2)

as expected.

These formulæ show why the case when Z is infinite requires special

precautions: as the number of products goes to infinity, the value of the

Emax function goes to infinity. There are several ways to circumvent this

difficulty. Menzel (2015) lets the standard errors of the ζ terms shrink at the

appropriate rate. Dagsvik (1994) followed by Dupuy and Galichon (2014)

assume a specific form of frictions in the way partners can meet. We will

2See Daly and Zachary (1978) and Williams (1977).
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describe the latter in much more detail in Section 3.2.3.4.

2.1.2 Inverting Demand

The probabilities µx are observed in the data; to recover the preferences

of the buyers, we need to invert the inclusion in 2.1. To do so, we use

convex duality. Let G∗
x denote the Legendre–Fenchel transform of the convex

function Gx: for nonnegative q = (q1, . . . , qJ) such that
∑J

j=1 qj = 1,

G∗
x(q) = max

u∈RJ
(q · u−Gx(u)) . (2.3)

Note that restricting q to the simplex is necessary: it is easy to see that for

any scalar t we have Gx(u+ t) ≡ Gx(u)+ t, so that the maximum would be

infinite if we did not impose that
∑

j qj = 1. Therefore the vector q must be

a probability over {1, . . . , J}. Galichon and Salanié (2022) call the function

G∗
x the generalized entropy of choice.

The function G∗
x is a maximum of functions that are linear in q, and is

therefore convex. By the envelope theorem, its subgradient at q is the set

of vectors u that achieve the maximum. Since Gx is convex, these vectors

are given by the first-order condition q ∈ ∂Gx(u).

Comparing with (2.1) shows that

U(x;P ) ∈ ∂G∗
x(µ

x). (2.4)

This inclusion calls for three comments. First, if u ∈ ∂G∗
x(q) then for any

scalar t we also have u + t ∈ ∂G∗
x(q). This is simply reflecting the fact
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that Gx(u+ t) = Gx(u) + t; it implies that at best utilities are only defined

up to an additive constant, as in any discrete choice model. Normalizing

their location by (for instance) U1(x;P ) = 0 for all x fixes the constant.

Moreover, the subgradient of Gx is a singleton when Gx is continuously

differentiable. If Gx is also strictly convex, then the subgradient of G∗
x

is a line {u} + R1J , where 1J is a vector of ones in RJ that reflects the

indeterminacy of the general level of utilities. We will define the following

two important assumptions:

Assumption 5. For each x ∈ X , the probability distribution Px has no

mass point: Px({e}) = 0 for any e ∈ RJ .

and

Assumption 6. For each x ∈ X , the probability distribution Px has full

support.

One can show that:

Theorem 8. Assumption 5 implies that Gx is differentiable: for any u,

∂Gx(u) =

{
∂Gx

∂u
(u)

}
.

Assumption 6 implies that that Gx is strictly convex on any subspace defined

by Uk = c for some k ∈ {1, ..., J} and some constant number c. This in turn

implies that for every µ, ∂G∗
x(µ) contains only one point U such that Uk = c.

To illustrate this, we return to the logit model of Example 7. Since the

distribution of the ζx is parameter-free, our goal is simply to recover an



62 CHAPTER 2. IDENTIFICATION

estimate of the function Ū . With this specification, equation (2.2) gives

Uj(x;P ) = log µxj + log

J∑
k=1

exp(Uk(x;P ));

making the Emax term on the right-hand side equal to some arbitrary num-

ber cx identifies all Uj(x;P ). Then the utility function Ū is identified non-

parametrically on Z by

Ū(x, zj) = P (zj) + log µxj + cx.

To put it differently, we identify the differences

Ū(x, zj)− Ū(x, zk) = P (zj)− P (zk) + log µxj /µ
x
k

for all j, k = 1, . . . , J .

To summarize our results:

Theorem 9 (Identification in the Hedonic Demand Model). Under As-

sumption 4, denote P the observed price function and take any observed

type x.

1. For any choice of the distribution Px, the differences in the utilities

U(x;P ) are partially identified by

U(x;P ) ∈ ∂G∗
x(µ

x).
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For any j and k ̸= j, the difference Ū(x, zj)− Ū(x, zk) is in the set

∂jG
∗
x(µ

x)− ∂kG
∗
x(µ

x) + P (zj)− P (zk).

2. if the distribution Px yields a strictly convex and differentiable Gx,

then the differences in the utilities U(x;P ) are point-identified; for

any j and k ̸= j,

Ū(x, zj)− Ū(x, zk) =
∂G∗

x

∂µxj
(µx)− ∂G∗

x

∂µxk
(µx) + P (zj)− P (zk).

3. if Px satisfies Assumptions 5 and 6, then 2. obtains.

These results depend on observing the prices of all varieties. It is clear

from Theorem 9 that partial identification of the price function translates

directly into partial identification of the utilities. Even more importantly,

the identification is conditional on the distribution Px being fully known. If

the analyst only assumes that Px belongs to a family of distributions, this

indeterminacy again translates into partial identification of the differences

of the utilities. We will give an example in Section 2.1.3.

2.1.3 Implementing demand inversion

Sometimes, as in Example 7, the functions Gx and G∗
x are available in closed

form. It is easy to check that given the multinomial logit structure,

G∗
x(q) =

J∑
j=1

qj log qj ,
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the entropy of the probability distribution q. To make it slightly more gen-

eral, assume that Px has a scale parameter σx. ThenGx(u) = σx log
∑J

j=1 exp(uj/σx)

and G∗
x(q) = σx

∑J
j=1 qj log qj , whose subgradient is

∂G∗
x(q) = σx{log q}+ R1J .

Therefore differences of utilities are identified by Uj(x;P ) − Uk(x;P ) =

σx log(µ
x
j /µ

x
k) if σx is known a priori. If not, then only ratios of differences

of utilities are identified: we could for instance normalize location and scale

by U1(x;P ) = 0 and UJ(x;P ) = log(µxJ/µ
x
1) to set σx = 1 and Uj(x;P ) =

log(µxj /µ
x
1).

This illustrates a general point: in discrete choice models, even under our

separability assumption, preferences are only identified nonparametrically if

the distribution Px of their individual-specific component (our vector ζx)

is “known”—which usually means “assumed”. Since we only observe the J

numbers in µx for each x, and their sum is fixed, we cannot hope to identify

more than the J values of the vector U , up to an additive constant. The

alternatives are to use a parametric specification for the preferences Ū(x, z)

and the distribution of ζ(x, z̃); to restrict the variation in preferences across

x; and more generally, to combine additional data and exclusion restrictions.

We will return to this point in more detail in Section 3.1.
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2.1.4 Demand and inverse demand beyond the quasi-linear

case

It is possible to extend the previous results to preferences U (x̃, z, p) that

are neither quasilinear nor separable, even when Z is not a finite set. To

see this, remember that the support of the individual demand π̃D(·|x̃;P ) of

a full type x̃ for the price function P is

S(x̃;U,P ) ≡ argmax
z∈Z

U (x̃, z, P (z)) .

Now fix an observed type x and let ñ(dx̃|x) the distribution of full types

whose observed types is x, as in Section 1.1. Take a measurable subset B of

Z. Let X̃−
B (resp. X̃+

B ) denote the set of x̃ such that S(x̃;U,P ) ⊂ B (resp.

S(x̃;U,P ) ∩ B ̸= ∅). While X̃−
B consists of the full types whose preferred

choices are all in B, the larger set X̃+
B also includes full types some of whose

preferred choices are in B. The measure µx(B) of the set of observed types

who choose a product in B clearly cannot be smaller than that of X̃−
B ; and

it cannot be greater than that of X̃+
B . A theorem of Strassen (1965) can be

used to prove that this is in fact an exact characterization of the demand

µx: we can replace the identification inclusion (2.4) with µx ∈ Qx, where

Qx is the set of such measures ν over Z such that for all measurable subsets

B of Z,

ñ(X̃−
B |x) ≤ ν(B) ≤ ñ(X̃+

B |x). (2.5)

This type of characterization has been used in the context of partial identi-

fication, see e.g. Galichon and Henry (2011).
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If the preferred set of products S(x̃;U,P ) of almost every full type x̃

with observed type x is a singleton under the price function P , then the sets

X̃−
B and X̃+

B coincide and µx is uniquely determined.

Since the X̃B sets depend on the family of preferences U , the inequalities

(or equalities) in (2.5) can be used to partially identify U . The difficulty of

this demand inversion very much depends on the specification of U . To take

a trivial example, let us modify the logit model of Example 7 by replacing

Ū(x, z)− P (z) with some Ū(x, z, P (z)). Then (2.5) boils down to requiring

that

µx(zj) =
exp(Ū(x, zj , P (zj))∑J
k=1 exp(Ū(x, zk, P (zk))

for all products zj ; inversion gives Ū(x, zj , P (zj)) = logµx(zj) + cx for an

arbitrary family of numbers cx.

2.1.5 Endogenous Prices

It is worth stressing here the similarities and differences with the way de-

mand is modeled in empirical industrial organization. Typically, empirical

IO models choices between a finite number of varieties, with heterogeneous

consumer preferences over a vector of product characteristics C(z). Using

our notation, a generic Berry, Levinsohn, and Pakes (1995) specification

would have x̃i = (xi, εi) and

U(x̃i, zj , pj) = C(zj) · (a(xi) + εi)− pj + ξj + vij . (2.6)

Here the vector vi = (vij)j=1,...,J consists of J iid draws from a type I-EV

distribution, and the vectors vi are iid across i. The “product effects” ξj
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are unobserved and usually correlated with pj . The goal of the analyst is to

estimate the vector function a and the distribution of ε conditional on x.

This is typically done by imposing a set of moment conditions E(ξj |Wj) = 0.

The first two terms in (2.6) map directly into the preferences we are

using:

Ū(x, z) = C(zj) · a(xi)

ζxj = C(zj) · εi.

On the other hand, IO includes the additional term (ξj+vij) to represent the

effect of unobserved product characteristics. While the methods presented

in this chapter cannot incorporate the idiosyncratic terms (vij), it is easy to

accommodate the unobserved market-wide product effects ξj . All we need

to do is change Uj(x;P ) to Uj(x;P ) + ξj to get

U(x;P ) + ξ ∈ ∂G∗
x(µ

x).

Suppose for simplicity that G∗
x is strictly convex and differentiable, and fix

the general level of utilities. Then the set of moment conditions E(ξj |Wj) =

0 can be rewritten as

E

(
∂G∗

x

∂µxj
(µx)− Uj(x;P )

∣∣∣∣Wj

)
= 0 for j = 1, . . . , J,

which identifies U(x;P ) under completeness conditions—in practical terms,

if the moment conditions are informative enough.

To put it differently, our specification is very close to the “pure charac-
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teristics” model of Berry and Pakes (2007).

2.2 Identification in Separable Matching Models

The primitives of a separable matching problem consist of

• the joint distribution ñ of x̃ = (x, ε); we denote n its margin on x, and

Px the distribution of ε conditional on x;

• the joint distribution m̃, with margin m on y and a conditional distri-

bution Qy of η given y;

• the functions Φ, ζ, and ξ.

We saw in Section 1.3.2 that any matching problem with perfectly trans-

ferable utility can be reframed as an optimal transportation problem. Con-

sider the dual version, as stated in (1.20): we minimize the sum of utilities

∫
X̃
ũ(x̃)ñ(dx̃) +

∫
Ỹ
ṽ(ỹ)m̃(dỹ)

under the stability constraints. Theorem 6 implies that at the optimum ,

there exists a function U such that

∫
ũ(x̃)ñ(dx̃) =

∫
max
y∈Y0

(U(x, y)+ζ(x, ε, y))n(dx)Px(dε) =

∫
Gx(U(x, ·))n(dx)

where Gx(U(x, ·)) is the “Emax” function for men of observable type x:

Gx(U(x, ·)) =
∫

max
y∈Y0

(U(x, y) + ζ(x, ε, y))Px(dε).
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This is exactly the function we introduced in Section 1.1.2.3 for one-sided

choice problems; again, we normalize it by U(x, 0) = 0 for all x. Define

Hy(V (·, y)) in a similar way for women of observable type y. With this

notation, the social welfare is the sum of Emax utilities

W =

∫
Gx(U(x, ·))n(dx) +

∫
Hy(V (·, y))m(dy). (2.7)

Like the functions Gx and Hy, it is convex; all we have to do is minimize it

with respect to U and V ≥ Φ−U , then define ũ and ṽ by (1.24) and (1.25),

e.g.

ũ(x̃) = max
y∈Y0

(U(x, y) + ζ(x, ε, y).

By construction, the functions ũ and ṽ satisfy the stability conditions.

To make this more concrete, let us suppose that the sets of observed

types are finite and all (x, y) matching cells are non-empty. We will return

to continuous types in Section 3.2.3.4. Assuming full support is a minor

technical convenience.

Assumption 7 (Discrete types). The sets of observed types are X = {1, . . . , X}

and Y = {1, . . . , Y }; no matching cell (x, y) in A = (X × Y0) ∪ (X0 × Y) is

empty.

With discrete types, Φ,U and V are X × Y matrices. We accordingly

adapt the notation by using subscripts instead of function arguments: e.g.

type x (resp. y) has a mass nx (resp. my); the matrix U has rows Ux· and
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columns U·y. The social welfare in (2.7) becomes

X∑
x=1

nxGx(Ux·) +
Y∑

y=1

myHy(V·y).

The full support assumption has two consequences. First, V = Φ − U

by Theorem 6. Second, all functions Gx and Hy are differentiable at the

optimum. Then minimizing the social welfare with respect to U gives first-

order conditions

nx
∂Gx

∂Uxy
(Ux·) = my

∂Hy

∂Vxy
(Φ·y −U·y). (2.8)

By the Daly-Zachary-Williams theorem, the left-hand side of (2.8) is the

number of matches of men of observable type x with women of observ-

able type y. These first-order conditions simply state that at the minimum

of (2.7), it must equal the number of matches of women of observable type

y with men of observable type x. Therefore the matrix U supports a stable

matching. In turn, the common value µxy of the two sides is the number of

matches in the (x, y) cell of observable types; and the utilities are distributed

as per (1.24) and (1.25).

These results are proved rigorously in Galichon and Salanié (2022).

While useful, they still do not give a straightforward way to solve for U .

In the discrete example, the first-order conditions are a system of X × Y

nonlinear equations in as many unknowns. We could minimize the social

welfare directly, as it is globally convex. This can still be costly if there

are many possible observable types on each side of the match. Fortunately,
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the theory of convex duality allows us to go even further and to derive a

closed-form solution.

First note that under Assumption 7, a feasible matching is simply a

matrix µ whose elements µxy are positive and sum up to no more than

the margins n = (n1, . . . , nX) on rows and to no more than the margins

m = (m1, . . . ,mY ) on columns: for all x and y,

Y∑
t=1

µxt ≤ nx and
X∑
z=1

µzy ≤ my.

Note that this defines implicitly µx0 = nx −
∑Y

y=1 µxy (resp. µ0y = my −∑X
z=1 µzy) as the number of men of type x (resp. of women of type y) who

end up single in the matching µ.

For any feasible matching, we define the conditional matching probabil-

ities µy|x = µxy/nx and µx|y = µxy/my; the feasibility constraints become∑Y
y=1 µy|x ≤ 1 and

∑X
x=1 µx|y ≤ 1. Under our full support assumption,

these inequalities are strict and all conditional probabilities are positive.

Now remember from equation (2.3) that we can associate to the convex

function Gx its convex (Legendre-Fenchel) transform by

G∗
x(µ·|x) = max

Ux·

 Y∑
y=1

µy|xUxy −Gx(Ux·)


for all µ·|x such that

∑Y
y=1 µy|x < 1.

Applying the envelope theorem to the above program gives the set of
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conditions

∂G∗
x

∂µy|x
(µ·|x) = Uxy,

which associate to any feasible matching µ the matrix U that rationalizes

it:

∂Gx

∂Uxy
(U·|x) = µxy.

This applies in particular to the equilibrium matching; writing

Uxy =
∂G∗

x

∂µy|x
(µ·|x)

Vxy =
∂H∗

y

∂µx|y
(µ·|y)

and adding up identifies Φxy as

Φxy =
∂G∗

x

∂µy|x
(µ·|x) +

∂H∗
y

∂µx|y
(µ·|y). (2.9)

If Ux· rationalizes µ·|x, then Gx(Ux·) +G∗
x(µ·|x) =

∑Y
y=1 µy|xUxy. Mul-

tiplying by nx gives nxGx(Ux·) + nxG
∗
x(µx·/nx) =

∑Y
y=1 µxyUxy; summing

over x and adding the corresponding equations on the y side, we obtain

X∑
x=1

Y∑
y=1

µxyΦxy =

 X∑
x=1

nxGx(Ux·) +

Y∑
y=1

myHy(V·y)


+

 X∑
x=1

nxG
∗
x(µx·/nx) +

Y∑
y=1

myH
∗
y (µ·y/my)

 .

The first term on the right hand side is the value of social welfare W

(see (2.7)). The second term is the opposite of the generalized entropy E ,
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defined in Galichon and Salanié (2022) as the concave function

E(µ;n,m) = −
X∑

x=1

nxG
∗
x(µx·/nx)−

Y∑
y=1

myH
∗
y (µ·y/my).

Given this definition, the closed-form identification formula (2.9) can be

rewritten as

Φ = −∂E
∂µ

(µ;n,m). (2.10)

These are simply the first-order conditions for the maximization of the social

welfare

W(Φ,n,m) = max
µ

 X∑
x=1

Y∑
y=1

µxyΦxy + E(µ;n,m)

 . (2.11)

Suppose we scale up the distribution of the error terms by a factor σ > 0.

It is easy to see that

Gσ
x(Ux·) = E max

y=0,1,...,Y

(
Uxy + σζxy(ε)

)
= σG1

x(Ux·/σ)

and its convex transform (Gσ
x)

∗ is simply σ(G1
x)

∗. When σ is very small,

matching only involves observables; the generalized entropy function be-

comes negligible and the social welfare reduces to the first term in (2.11).

Matching on unobservables adds another contribution to the social welfare

W, via the generalized entropy term.
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2.2.1 Gaining Identification Power

It is important to understand what (2.9) achieves. It identifies the matrix Φ

as a function of the observed matching patterns µ in so far as we can com-

pute the derivatives of the Legendre-Fenchel transforms G∗
x and H∗

y . Since

the latter depend on Gx and on Hy, which in turn integrate over the distri-

bution of the unobservable types, this gives us nonparametric identification

conditional on knowing (or assuming) the distributions Px and Qy of the

2-way terms ζxy(ε) and ξxy(η). There is just not enough information in the

data on matching patterns to identify more, or even to test the model: for

any assumed distributions of the ζ and ξ terms, for any observed matching

patterns µ, there exists a (unique) Φ that rationalizes µ.

There are (at least) two possible responses. One is to parameterize or

otherwise restrict the specification of Φ, and to reuse degrees of freedom

in the specification of ζ and ξ. The other response is to add more data;

this has mostly been done by pooling data from several matching markets

and assuming that some elements of the specification are constant across

markets. These approaches are clearly non-exclusive. We start with the

former, and we will describe the latter in Section 3.2.3.1.

2.2.2 The Logit Model

The most popular specification of the separable model is the multinomial

logit of Choo and Siow (2006). In addition to separability (Assumption 1)

and discrete types (Assumption 7), Choo and Siow assumed that the er-

ror terms have the familiar structure that underlies one-sided multinomial
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discrete choice models.

Assumption 8 (Logit Specification).

ζxy(ε) = εy and ξxy(η) = ηx

for all (x, y) in A, where the vectors (ε0, ε1, . . . , εY ) and (η0, η1, . . . , ηX) are

independent draws from the standardized type-I extreme value distribution.

The calculations become very simple and familiar. Consider an infinitely

large matching market. Then the “Emax” functions take the familiar “log-

sum-exp” form; for instance,

Gx(Ux·) = log

(
1 +

Y∑
t=1

exp(Uxt)

)

where we used exp(Ux0) = exp(0) = 1. The conditional matching patterns

associated to a given U are

µy|x =
exp(Uxy)

1 +
∑

t exp(Uxt)

and the Legendre-Fenchel transforms are

G∗
x(µ·|x) =

Y∑
y=1

µy|x logµy|x + µ0|x logµ0|x,

defining µ0|x = 1 −
∑Y

y=1 µy|x. In this case, the generalized entropy E is



76 CHAPTER 2. IDENTIFICATION

simply the standard entropy

E(µ;n,m) = −
X∑

x=1

Y∑
y=1

µxy log
µ2xy
nxmy

−
X∑

x=1

µx0 log
µx0
nx

−
Y∑

y=1

µ0y log
µ0y
my

.

Equation (2.9) gives the very simple Choo and Siow formula

Φxy = log
µ2xy

µx0µ0y
. (2.12)

2.2.3 Other Specifications

Since it has no free distributional parameter, the logit specification circum-

vents the identification issues mentioned in Section 2.2.1. On the other

hand, it suffers from the usual problems of the multinomial logit: it has

very constrained comparative statics, and relabeling the types has spurious

effects3.

By construction, the unobservable shocks εy and εt in the logit specifica-

tion are independent if y ̸= t. Even with discrete variables, natural notions

of distance between y and t often emerge. In such cases, a more reasonable

specification would allow for a form of “local” correlation by that metric.

The more general results in Section 2.2 can accommodate such models, and

more.

A first, simple change is to keep the type-I distributional form and the

independence of the draws in Assumption 8, but to allow for scale factors

3See Galichon and Salanié (2022, Appendix C.2), and Galichon and Salanié (2019) for
a longer discussion.
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that may depend on the type:

ζxy(ε) = σxεy and ξxy(η) = τyηx

where σ and τ are vectors of positive numbers. The identification formulæ

become

Φxy = log
µ
σx+τy
xy

µσx
x0µ

τy
0y

.

We give formulæ for the two-level nested logit and for a mixed logit in Gali-

chon and Salanié (2022, Section 2). The logit structure is not essential,

however; for Generalized Extreme Value specifications, see Galichon and

Salanié (2022, Appendix B).

2.2.4 Beyond Transferable Utility

Galichon, Kominers, and Weber (2019) showed how formula (2.9) extends to

the imperfectly transferable utility specification of Section 1.3.4. Recall that

in this class of separable models, the frontier of the set of feasible utilities

for a match (x̃, ỹ) is the set of (Ũ , Ṽ ) pairs such that

Dxy

(
Ũ − ζ(x̃, y), Ṽ − ξ(ỹ, x)

)
= 0, (2.13)

where Dxy is an admissible distance function4.

Under these assumptions, we still have

Ũ =
∂G∗

x

∂µy|x

(
µ·|x

)
+ ζ(x̃, y) and Ṽ =

∂H∗
y

∂µx|y

(
µ·|y

)
+ ξ(x, ỹ), (2.14)

4See Assumptions 2 and 3.
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where G∗
x and H∗

y are the Legendre-Fenchel transforms of the Emax func-

tions that correspond to the distributions of the ζ and ξ, respectively.

Substituting (2.14) in (2.13) gives, for all (x, y),

Dxy

(
∂G∗

x

∂µy|x

(
µ·|x

)
,
∂H∗

y

∂µx|y

(
µ·|y

))
= 0. (2.15)

This set of equations provides identifying information on the function Dxy,

given known/assumed distributions for ζ and ξ.

In the logit case, we know that

Uxy = log
µxy
µx0

and Vxy = log
µxy
µ0y

. (2.16)

Using the property Dxy (u+ c, v + c) = Dxy (u, v) + c, formula (2.15) gives

logµxy +Dxy

(
− logµx0,− logµ0y

)
= 0. (2.17)

Note that if utility is perfectly transferable, Dxy(u, v) = (u+v−Φxy)/2 and

we recover the Choo and Siow formula (2.12).

2.3 Identification in hedonic models

Our exposition of identification in hedonic models will follow the thread that

runs from Tinbergen (1956) through Rosen (1974) to Ekeland, Heckman,

and Nesheim (2004) and Heckman, Matzkin, and Nesheim (2010). We will

also discuss the contributions of Bajari and Benkard (2005) and of Epple

(1987) and Epple and Sieg (1999).
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We will assume throughout that all characteristics of the products are

observed, so that the full type z and the observed type z coincide. We

will return to this assumption in Section 2.3.4. On the other hand, agent

full types have both observed and unobserved components, which we denote

x̃ = (x, ε) and ỹ = (y, η).

2.3.1 The identification problem: Rosen’s approach and its

shortcomings

Rosen’s pioneering paper illustrated the essence of the identification prob-

lem: since different agents trade different products, the slope of the price

function P for a given product z reflects the marginal utilities of the agents

who trade that product. Only in very special cases will it give the informa-

tion necessary to identify the underlying utility functions.

This is easily seen in the version of the quadratic model of Example 4

that we solved in Section 1.2, where the hedonic equilibrium price function

was also quadratic:

P (z) = k + lz +mz2/2.

Given an infinite sample, we easily identify the function P and recover the

coefficients k, l, and m. The first-order condition of buyer’s ε problem yields

P ′ (z) = l +mz = Bz + ε. (2.18)

This can be seen as a regression of the known (or identified) P ′(zi) on zi,

where i ranges over buyers. Rosen (1974) initially proposed to jointly esti-
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mate two such regressions (one on each side of the market). As pointed out

by a number of papers from Brown and Rosen (1982) to Ekeland, Heckman,

and Nesheim (2004), this approach has serious shortcomings. Since buyer

i selects their preferred product zi on the basis of their unobserved charac-

teristics εi, the regressor and the error term are correlated 5. Over the last

twenty years, a series of papers have revived this issue and proposed several

strategies to tackle it.

2.3.2 Rank-based Identification

One strategy, advocated particular by Heckman, Matzkin, and Nesheim

(2010), relies on quantile identification. In our quadratic example, the per-

centile of z in its distribution coincides with the percentiles of both the

buyer’s and seller’s unobserved taste ε and η. Under suitable assumptions,

this extends to a broader classes of models, after conditioning on observed

types x and y.

Heckman, Matzkin, and Nesheim (2010) assume that the unobserved

variation in agent types is scalar; independently distributed of the observed

type; and satisfies a single-crossing condition. More precisely, assume for

simplicity that the set of products Z is a closed interval of the real line

[z, z].

We focus on the demand side, where the buyer utility is quasilinear: we

denote it U(x, ε, z) − p. We assume that the unobserved type ε is a scalar

distributed independently of x, and that the marginal utility of the product

characteristic z is an increasing function of ε. Then the choice probability

5In the example of Section 1.2, the correlation is positive and induces a positive bias.
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πD(·|x̃;P ) is a Dirac mass on a point zD(x, ε) such that

∂zU(x̃, z) = P ′(z);

zD(x, ε) is an increasing function of ε, and the aggregate demand has qD(B) =

Pr(zD(x̃) ∈ B) for any measurable subset of Z.

The data identifies the price function P and the joint distribution of

product and buyer types (z, x). Since we know that zD(x, ε) is increasing in

ε, and ε is independent of x, the usual quantile inversion argument allows

us to write that for any scalar t,

Pr(z ≤ t|x) = Pr(ε ≤ D1(x, t))

where D1(x, ·) is the inverse of the increasing function ε→ zD(x, ε). While

the left-hand side of this equation is directly identified from the data, its

right-hand side depends on two unknown quantities: the distribution of

ε and the function D1. This was to be expected: in the absence of any

functional or distributional restriction, we need to impose a normalization.

We could let ε be uniformly distributed over [0, 1], for instance, which allows

us to interpret it as a quantile. Then we obtain

D1(x, z) = FZ|X(z|x),

and by direct inversion the demand zD. A similar argument allows us to

recover the supply zS .

For many applications, and in particular when we seek welfare evalu-



82 CHAPTER 2. IDENTIFICATION

ations, we will want to identify the utility functions themselves. Unfortu-

nately, knowing the price function and the demand and supply functions is

not enough. Consider the first-order condition for buyer x̃:

∂zU(x̃, zD(x̃)) = P ′(zD(x̃)).

The marginal price function P ′ is known, and we just identified the function

zD. But this only identifies the marginal utility ∂zU on the graph of the

demand function zD: it gives us no information6 on ∂zU(x̃, z) if z ̸= zD(x̃).

The only way to extrapolate its values is to restrict the form of the function

U somehow.

Imposing more structure on U may also allow to relax the assumption

that the distribution of ε is known. In this vein, Ekeland, Heckman, and

Nesheim (2004) make further assumptions on the form U in z and require

continuous observable characteristics x. Let buyer x̃’s utility function be

za(x) + εz −B (z)− p. The first-order conditions then become

P ′ (z) = a(x) + ε−B′ (z) ,

which we can rewrite as d (z)− a (x) = ε with d ≡ P ′ + B′. If the function

d is increasing in z, Ekeland, Heckman, and Nesheim (2004) note that

FZ|X (z|x) = Pr (ε ≤ d (z)− a (x)) = Fε (d (z)− a (x)) .

6We did impose that Uz increase with ε for given x; this is very coarse information,
however.
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Taking the derivatives with respect to x and z gives

∂xFZ|X (z|x) = −fε (d (z)− a (x)) a′ (x)

∂zFZ|X (z|x) = fε (d (z)− a (x)) d′ (z) .

As a result, the ratio ∂zFZ|X (z|x) /∂xFZ|X (z|x) = −d′ (z) /a′ (x). It is easy

to see that this identifies the functions d and a up to location parameters

and to a common scale parameter; since P ′ is directly identified, this also

identifies the function B′. This strategy obviously cannot be applied to

discrete-valued observed types x, however.

2.3.3 The optimal transportation approach

Chernozhukov, Galichon, Henry, and Pass (2021) extend Heckman, Matzkin,

and Nesheim (2010)’s identification strategy by leveraging the tight connec-

tion between hedonic models and the optimal transportation problem. We

focus here on the class of hedonic markets described in paragraph 1.2, where

agents are endowed with quasilinear utilities and unobserved heterogeneity

is additively separable:

U(x̃, z;P ) = Ū(x, z)−P (z)+ζ(x̃, z) and V (ỹ, z;P ) = V̄ (y, z)−P (z)+ξ(ỹ, z).

As in previous sections, we assume that the joint distribution FX,Z of

(x, z) is identified from the data. We adopt two different approaches, de-

pending on whether prices are observed or not.
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2.3.3.1 Observed Prices

If the price function P (·) is identified from the data, we can identify pref-

erences of buyers and of sellers separately, for any given distribution of the

unobserved heterogeneity.

To see this, take the demand side for instance. The Daly-Williams-

Zachary theorem tells us that the derivatives of the Emax function coincide

with the choice probabilities. In the notation of Section 1.1,

∂Gx

∂Ū(x, z)
= πD(z|x;P ).

Fix x; these equations are the first-order conditions of the problem

min
Ux

(∫
max
z∈Z

{Ux (z)− P (z) + ζ(x̃, z)} ñ (dx̃|x))−
∫
Z
Ux (z)FZ|X (dz|x)

)
(2.19)

where the function Ux gives Ū(x, z) = Ux(z).

If we know (or assume we know) exactly the function ζ(x, ·, ·) and the

conditional distribution ñ(·|x) at a type x, then minimizing (2.19) directly

gives us the utility function Ux, up to a location parameter c(x). Any

unknown parameters in ζ(x, ·, ·) or ñ(·|x) can only be identified if further

restrictions are imposed on the preferences Ū . For a simple illustration, let

us consider a supermodular example:

Example 10. We follow here Matzkin (2003)’s identification strategy. Sup-

pose that both z and ε are scalar, with continuous distributions FZ|X and

Fε|X on R, and that for all x, (ε, z) → ζ(x, ε, z) is supermodular. The pre-

ferred choice of x̃ = (x, ε) is the value of z that maximizes Ū(x, z)−P (z) +
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ζ(x, ε, z). Since ζ is supermodular, this z is an increasing function zD(x, ε)

of ε; it solves

∂Ū

∂z
(x, z) = P ′(z)− ∂ζ

∂z
(x, ε, z). (2.20)

Since ε → zD(x, ε) is increasing, it has an inverse which we denote ε =

D1(x, z). Moreover, we must have Fε|X(D1(x, z)|x) = FZ|X(z|x). Substitut-

ing into (2.20), we get

∂Ū

∂z
(x, z) = P ′(z)− ∂ζ

∂z
(x, F−1

ε|X(FZ|X(z|x)|x), z);

this integrates into

Ū (x, z) = c (x) + P (z)−
∫ z

0

∂ζ

∂z

(
F−1
ε|X
(
x, FZ|X (t|x) |x

)
, t
)
dt,

where c (x) is an arbitrary number.

Even in this scalar, supermodular case, we need to make additional as-

sumptions on the function ζ. If for instance we impose that unobserved

heterogeneity in preferences only shift the marginal utility of z, we could let

ζ(ε, z) ≡ εz. This would give us

U (x, z) = c (x)−
∫ z

0
F−1
ε|X
(
FZ|X (t|x) |x

)
dt;

further assumptions on Fε|X would add identifying power.

Alternatively, we could start from (2.19) and specify a parametric form.

Let β collect the unknown parameters of Ū , ζ, and ñ(·|x). Then we would

identify β as the minimizer (or the set of minimizers) of the following ex-
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pression:

∫
X
n(dx)

(∫
X̃
uβ(x̃)ñβ(dx̃|X = x)−

∫
Z
Ūβ (x, z)FZ|X=x (dz|x)

)
,

where uβ(x̃) = maxz∈Z
(
Ūβ (x, z)− P (z) + ζ(x̃, z)

)
if x̃ has observed type

x.

2.3.3.2 Unobserved Prices

Let us now turn to the more interesting case when the data does not have

any information on prices. For simplicity, we assume that the sets of ob-

served types and products X ,Y, and Z are finite and we adapt the notation

accordingly. We denote Z0 = Z ∪ {0} the set of products augmented by

the exit option, for which P (0) = Ū(x, 0) = V̄ (y, 0) = 0. We assume that

the econometrician observes the quantities purchased and sold µ(z|x) and

µ(z|y) for all x, y, and z.

The Emax operators of a buyer of type x and a seller of type y are

respectively

Gx

(
Ū
)

= EPx max
z∈Z0

(
Ūxz − Pz + εxz

)
Hy

(
V̄
)

= EQy max
z∈Z0

(
V̄yz + Pz + ηyz

)
Using Legendre-Fenchel transforms and duality, we get

Ūxz − Pz =
∂G∗

x

∂µz|x

(
µ.|x

)
V̄yz + Pz =

∂H∗
y

∂µz|y

(
µ·|y

)
,
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and we can eliminate the unobserved prices to obtain an analog of the non-

parametric identification formula of Section 2.9:

Ūxz + V̄yz =
∂G∗

x

∂µz|x

(
µ.|x

)
+
∂H∗

y

∂µz|y

(
µ.|y

)
.

This shows that even though the prices are not observed, we can identify Ūxz

and V̄yz up to a common z fixed effect, provided that we know (or assume)

the distributions Px and Qy that determine the shape of the functions G∗
x

and H∗
y .

2.3.4 Dealing with Unobserved Product Characteristics

We assumed so far that the econometrician observes all characteristics of

the products that are payoff-relevant for the agents. This is an unpalatable

assumption: as mentioned in Section 2.1.5, the empirical industrial orga-

nization literature, for instance, gives a large role to unobserved “product

effects”. These terms can be seen as the utility value of product character-

istics that the agents observe but the econometrician does not. Let us now

assume that the product characteristics have two components: z̃ = (z, ξ),

where the characteristics z are in the data but the unobserved characteris-

tics ξ are not. We denote U(x̃, z̃, p) the utility of a consumer x̃ who buys

a variety z̃ at price p. The equilibrium price function now must depend

on both components of z̃: we have p = P (z, ξ). Since ξ is unobserved, the

econometrician can only estimate the distribution of P (z, ξ) conditional on

z.

While identifying the U preferences from the data may seem hopeless,
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Bajari and Benkard (2005) show three sets of assumptions under which it

can be done. The common underlying idea is to combine monotonicity and

independence assumptions to identify the value of ξ for any product whose

characteristics z are observed, essentially reducing the identification problem

to the case when all product characteristics are observed.

To see how this works, assume that ξ is a scalar characteristic and that

the utility U is increasing in ξ. Now consider the consumers who buy a

product with observed characteristics z. Since U decreases with the price p,

none of these consumers will buy (z, ξ1) in preference to (z, ξ2) if ξ1 < ξ2 and

P (z, ξ1) ≥ P (z, ξ2). Therefore for given z, the equilibrium price function

ξ 7→ P (z, ξ) must be increasing.

The next step is to see that if we assume moreover that ξ is distributed

independently of z, then the conditional quantiles of the price identify ξ.

The argument is very similar to that in Section 2.3.2. Denote P 1(z, p) the

inverse function of ξ → P (z, ξ) = p. We have

Fp|Z(p|z) = Pr(P (z, ξ) ≤ p|Z = z)

= Pr(ξ ≤ P 1(z, p))

= P 1(z, p)

where the second line uses independence and the third line normalizes the

distribution of ξ to be U [0, 1], again without loss of generality.

Since the distribution of price conditional on z is observed, we identify

the function P 1(z, p) and therefore its inverse P (at least on the range of

variation of these variables). Now take any product z̃ = (z, ξ), with its price
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P (z, ξ). By the above equations, we have

Fp|Z(P (z̃)|z) = P 1(z, P (z̃)) = ξ

so that we recover the unobserved characteristics of this product.

Bajari and Benkard (2005) also discuss two variants of this idea. The

first one uses the price variation between different “option packages” on the

same product. The second one relaxes the independence of observed and

unobserved characteristics by introducing instruments.
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Chapter 3

Inference

We now turn to estimation and testing. This section follows the structure

of the previous ones: we start with individual demand; then we move to

matching models, and finally to hedonic equilibrium. Minimum-distance

estimation will be a recurrent theme, as it leads to practical estimation

method that do not require solving for the stable matching or equilibrium.

We also present a variety of other approaches to inference, however.

3.1 Inference on Demand

Let us first consider individual demand in the very common case when the

utility function is assumed to be quasi-linear and separable:

U(x̃, z, p) = Ū(x, z)− p+ ζ(x̃, z).

91
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We also assume that z only takes J values. In the language of the econo-

metrics of discrete choice, we have a multinomial Additive Random Utility

Model, that is quasi-linear in price. There are of course many well-known

methods to estimate such models. Rather than reviewing them, we will use

this opportunity to introduce the minimum distance estimator that plays a

central role in this section.

Suppose that a parameter vector θ is used to index both the preferences

Ūθ(x, z) and the distribution Pθ
x of the vector ζx = ζ(x̃, ·) conditional on x.

Then the model is fully parametric. Let us denote, as in Section 1.1, the

Emax function by Gx, its Legendre-Fenchel transform by G∗
x; µ

x = µ(·|x)

the choice probabilities of buyers with observed type x; and Uθ(x;P ) the

vector of the values of Ūθ(x, z)− P (z) for all z ∈ Z. Then the function G∗
x

depends on θ and the identification condition (2.4) becomes:

Uθ(x;P ) ∈ ∂G∗
x(µ

x;θ).

If the model is well-specified, the true parameter vector θ0 satisfies this in-

clusion for all values of x; and any parameter vector θ that does is consistent

with the data.

In the simplest (and very commonly used) case when each G∗
x is strictly

convex and differentiable, all inclusions are equalities:

dx(µ;θ) ≡ Uθ(x;P )−∇µG
∗
x(µ

x;θ) = 0.

The identified set ΘI can be estimated by setting up a minimum distance
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estimation problem based on the following mixed hypothesis:

there exists θ such that for all x, dx(µ
x;θ) = 0. (3.1)

Any consistent estimator µ̂ of µ can then be used to obtain a consistent

estimator of θ.

Suppose for simplicity that X is finite (or take a finite subset of X values

of x) and stack the vectors (dx(µ̂
x;θ))x∈X into a vector D(µ̂;θ) ∈ RJ×X .

Then for any positive definite matrix W , solving

min
θ
D(µ̂;θ)′ W D(µ̂;θ) (3.2)

gives a consistent estimator of ΘI . More precisely, the set Θ̂I
n of values

of θ that achieve the minimum in (3.2) converges to ΘI for the Hausdorff

distance as n goes to infinity.

With a finite choice set, the vector µ̂n = (µ̂x,n)x∈X is asymptotically

normal with asymptotic variance-covariance matrix M :

√
n (µ̂n − µ) → N(0,M),

with Mxx′ = µx (11(x = x′)− µx′) .

Under point-identification, the set Θ̂I
n always consists of a single point

θ̂n. General results in minimum distance estimation readily apply: the

estimator θ̂n is asymptotically normal; its asymptotic variance is minimized
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by choosing W to be a consistent estimator of

W ∗ =
(
Dµ M D′

µ

)−1

where Dµ is the Jacobian of D with respect to µ at (µ,θ0). For this choice

of W ,
√
n
(
θ̂n − θ0

)
→ N(0,V )

with

V =
(
Dθ W

∗ D′
θ

)−1

withDθ the Jacobian ofD with respect to θ at (µ,θ0). Moreover, the mini-

mum value of the objective function (3.2) then is asymptotically distributed

as a χ2 with J ×X −K degrees of freedom, where K is the dimension of θ.

This gives a straightforward specification test.

3.2 Inference in Matching Models with Transfer-

able Utility

We now turn to matching markets, where the data the econometrician ob-

serves typically consists of a list of matches along with some characteristics

of the partners in each match: “who matches whom” in the jargon of this

subfield. This kind of data boils down to a set of numbers, each of which

counts the observed matches where the partners have given observed types.

In the marriage market, the data could record the number of marriages be-

tween a fireman and a midwife. In the labor market, it could be the number
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of midsize furniture manufacturers that employ three high-school graduates

as cabinetmakers.

Sometimes more information is available. The labor market is an im-

portant example where transfers may be observed: the data often records

wages paid, and perhaps some characteristics of the tasks of the worker.

Proxy measures for the “outcomes” of a match may also be recorded. One

can think of student grades in a teacher-students match, or worker perfor-

mance. Section 3.2.3 will explain how such additional information, when

available, can help identify and estimate the model.

As in Sections 1.3 and 2.2, most of this section will focus on the one-to-

one, bipartite model—the heterosexual marriage market of Becker (1973).

We will also explain in Section 3.2.3 how some of the results extend to

other matching markets with transferable utility. We assume throughout

that utility is perfectly transferable: at no cost, without limits, one for one.

Section 3.2.4 discusses imperfectly transferable utility.

Our discussion of identification in TU matching models will emphasize

the class of “separable” models, from Choo and Siow (2006) to Chiappori,

Salanié, and Weiss (2017) and our own work: Galichon and Salanié (2017,

2022, 2024). We will also describe the class of “index” models pioneered

by Chiappori, Oreffice, and Quintana-Domeque (2012). Finally, we discuss

the maximum-score approach of Fox (2010, 2018) and his coauthors, with

its recent developments that link it to theoretical results by Azevedo and

Hatfield (2018).

Estimation first requires taking a stand on sampling variation. The data

has two sources of sampling variation. The first one is reflected in estimates
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µ̂ of the matching patterns µ, and of the margins n and m. The second

one relates to the evaluation of the Emax functions.

Let us first consider the sampling unit. It can be the individual, or it

can be the match. To pursue the example of the marriage market, the data

may come from a survey of individuals, or from a survey of households. The

probability of observing a couple in cell (x, y), for instance, depends both

on the model for the population, as described in the previous sections, and

on the sampling scheme. This has consequences for the likelihood function

of the observations. Sampling schemes always matter, of course; still, this

general point needs to be paid even more careful attention when working on

matching data.

As for the Emax functions, remember that when we defined Gx and

Hy, we took expectations with respect to the distributions Px and Qy of the

unobservables. Stability conditions really refer to the empirical distributions

P̃x and Q̃y, as perceived by the agents. There are two difficulties here. First,

the population comprises some potential partners who are not in the sample.

Second, each individual may only be aware of a limited number of potential

partners. In principle, we should account for these two issues when applying

the identification formulæ. This is hard to do in practice (see Menzel (2015)

for a proposed solution in a non-transferable utility model of matching). If

agents match within a large population, one may want to appeal to a large

markets assumption and neglect this source of variability. This has been the

dominant approach in the literature.

To simplify exposition, we assume here that sampling was done at match

level and that markets are large enough that we can neglect the sampling
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variation in Px and Qy. We observe a sample of N households, and some

characteristics of both partners.

3.2.1 Nonparametric Estimation of the Surplus Function

Assume for now that observed types x and y are discrete. From the data,

we obtain the number µ̂xy of households that are matches between observed

types x and y; µ̂x0, the number of single men of observed type x, and µ̂0y,

the number of single women of observed type y. This results in margins

n̂x =
∑
y

µ̂xy + µ̂x0

m̂y =
∑
x

µ̂xy + µ̂0y.

The distributions of these estimators of matching patterns and of the mar-

gins are given by the standard formulæ of discrete choice problems. In the

simplest case, if the N households are drawn with equal probabilities from

an infinite population characterized by true matching patterns µ, then for

(x, y) ∈ A and (z, t) ∈ A1:

cov(µ̂xy, µ̂zt) =
1

N
µxy(11(x = z, y = t)− µzt).

If the distributions Px and Qy are parameter-free and have continuous

and full support, one can use the empirical analog of (2.9) directly to obtain

1Recall that A = (X × Y0) ∪ (X0 × Y).
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an estimate of the surplus matrix:

Φ̂xy = − ∂E
∂µxy

(µ̂; n̂, m̂) = − ∂G∗
x

∂µy|x
(µ̂·|x)−

∂H∗
y

∂µx|y
(µ̂·|y).

This assumes of course that the generalized entropy E corresponding to these

error distributions can be computed, at least numerically.

The distribution of the resulting estimator follows directly from that of

the estimated matching patterns µ̂. Like them, it is
√
N -consistent and

asymptotically normal. The logit model is a leading example; Choo and

Siow (2006) used (2.12) to estimate the surplus function. Note that the term

“nonparametric” only applies here to the matrix Φ, as the distributions Px

and Qy are imposed by the analyst.

3.2.2 Parametric Estimation of the Surplus Function

If the error distributions are not fully-specified, then the model is underi-

dentified unless restrictions are imposed on the specification of the surplus

function Φ and/or more data is used (see Section 3.2.3 for the latter). We

maintain our assumption that observed types are discrete; and we specify

a fully parametric model (Φθ, (Pθ
x), (Qθ

y )), with a true parameter vector θ0.

In typical applications, the dimension of θ is much smaller than X×Y , and

the model is identified and testable. We will assume that to be the case.

For any given value of θ, we can use one of the algorithms described in

Section 4.2 to solve the matching problem for the equilibrium values µθ of

the matching patterns given the surplus function Φθ, the error distributions

Pθ
x and Qθ

y , and the observed margin distributions n̂x and m̂y.
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Note that this results in a number of households

Nθ =
X∑

x=1

Y∑
y=1

µθ
xy +

X∑
x=1

µθ
x0 +

Y∑
y=1

µθ
0y

that will in general differ from the observed number of households N , as θ

predicts more or fewer matches than are observed in the sample.

3.2.2.1 Maximum Likelihood Estimation

The most obvious way to estimate a parametric separable matching model

is maximum likelihood. Under our assumptions the likelihood function of

the sample is

logL (θ) =

X∑
x=1

Y∑
y=1

µ̂xy log
µθxy
Nθ

+

X∑
x=1

µ̂x0 log
µθx0
Nθ

+

Y∑
y=1

µ̂0y log
µθ0y
Nθ

.

The maximum likelihood estimator θ̂
MLE

given by the maximization

of logL is consistent, asymptotically normal, and asymptotically efficient

under the usual set of assumptions.

3.2.2.2 Moment Matching

Instead of maximizing the likelihood of a fully specified model, the ana-

lyst may want to only impose some moment conditions. This approach is

particularly attractive when the model is semilinear :

Definition 6 (Semilinear Model). The parameter vector θ consists of (α,β).

The parameters in α only affect the distributions Px and Qy; those in β only

affect the joint surplus, which consists of a linear expansion over a family
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of K known basis functions ϕ: for all (x, y),

Φβ
xy =

K∑
k=1

βkϕxy,k.

This semilinear case is of special interest as it opens the door to very

simple estimation methods. In particular, it seems natural to want to match

the observed comoments Ĉk =
∑X

x=1

∑Y
y=1 µ̂xyϕxy,k with their simulated

counterparts:

Cθ
k =

X∑
x=1

Y∑
y=1

µθxyϕxy,k for k = 1, . . . ,K.

As an illustration, suppose that the k-th basis function is a dummy variable

that equals one when x = y: ϕxy,k = 11(x = y). Then the k-th comoment

counts the number of couples where the observed types of the man and

the woman coincide. By construction, equating Cθ to Ĉ gives as many

estimating equations as there are parameters in β. It can be used when the

error distributions are parameter-free, or for fixed values of their parameters

α. In the latter case, we obtain estimators β̂ = B̂(α), and one can (for

instance) maximize the profile likelihood over (B̂(α),α).

Galichon and Salanié (2022) show that for fixed α, the estimator B̂(α)

can be obtained by maximizing the function

K∑
k=1

βkĈk −Wα(Φβ; n̂, m̂)

where Wα is the social welfare defined in (2.11) when the entropy is com-
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puted using the distributions Pα
x and Qα

y .

Since Wα is convex in Φ and Φβ is linear in β, this function is globally

concave in β and its maximizer can be obtained very easily. Using (2.11),

the first-order conditions at the maximum are

Ĉk =
X∑

x=1

Y∑
y=1

∂Wα

∂Φxy

∂Φβ
xy

∂β
=

X∑
x=1

Y∑
y=1

µθxyϕxy,k

which indeed match observed and simulated comoments.

While the moment matching estimator is not efficient in general, it is

consistent and inference can be conducted on its parameters in the standard

way.

3.2.2.3 Minimum-distance Estimation

Both maximum likelihood and moment matching require solving for the

equilibrium matching patterns µ (or evaluating the social welfare W) for

many values of the parameter vector θ. We will describe in Section 4.2 our

IPFP algorithm, which provides a fast way of doing so for many models.

Still, one may want to circumvent solving for equilibrium during the esti-

mation process. We present here a minimum-distance method that achieves

this goal.

Given a parametric specification, our Equation (2.9) can be rewritten as

Φθ0 +
∂Eθ0

∂µ
(µ;n,m) = 0,

where Eθ is the generalized entropy function that is generated by the distri-
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butions Pθ
x and Qθ

y . This suggests a minimum-distance estimator θ̂ that is

obtained by minimizing a norm of the vector

D(θ) ≡ Φθ +
∂Eθ

∂µ
(µ̂; n̂, m̂) :

we only need to choose a positive-definite matrix S and to minimizeD(θ)′SD(θ).

If the model is identified, this estimator is consistent for any choice of S.

As in Section 3.1, there is a choice of the weighting matrix S that minimizes

the asymptotic variance of the estimator. Here it is

S∗ =
(
HMH ′)−1

,

where M is the asymptotic variance-covariance matrix of µ̂ and H is the

Hessian of the generalized entropy Eθ0 at µ. If the efficient weighting ma-

trix S∗ is chosen then the value of the objective function at the optimum

D(θ)′S∗D(θ) can be used as a specification test: under the null hypothesis

of correct specification, it is distributed as a χ2 with (X×Y −dim θ) degrees

of freedom.

The minimum-distance estimator takes a remarkably simple form if the

model is semilinear2 and the gradient of the generalized entropy Eα is linear-

affine in the parameters α:

∂Eα

∂µ
(µ;n,m) = e0(µ;n,m) +

L∑
l=1

el(µ;n,m)αl.

Then the efficient minimum-distance estimator can be obtained by quasi-

2See Definition 6.
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generalized least squares. In a first step, any weighting matrix S can be used;

GLS gives a consistent estimator θ̃. This allows us to compute the efficient

weighting matrix S∗, which is used in a second-step GLS. If moreover the

gradient of the generalized entropy is parameter-free (so that L = 0 above),

the efficient weighting matrix S∗ is simply the inverse of the variance of

e0(µ;n,m), which does not depend on θ. The minimum-distance estimator

then is a one-step GLS estimator.

The semilinear/linear case is not as rare as one might think: the logit

model is parameter-free, and both the heteroskedastic logit model and the

nested logit model generate generalized entropy functions that are linear in

the parameters. We refer the reader to Galichon and Salanié (2024) for the

formulæ, and to Salanié (2023) for their Python implementation.

The minimum-distance estimator has two minor drawbacks. To derive

the efficient weighting matrix S∗, it is necessary to compute the Hessian of

the generalized entropy. This is often a very sparse matrix, and it can be

done numerically3. Moreover, the estimator relies on (2.9), which only holds

when µ̂≫ 0. Galichon and Salanié (2024) discuss several solutions.

3.2.2.4 Estimating the Semilinear Logit Model

Since the semilinear logit model has proved to be so popular, we present

here another estimator that circumvents solving for equilibrium. We prove

in Galichon and Salanié (2024) that in this model, the moment-matching

estimator is formally identical to the maximum-likelihood estimator of a

Poisson regression with two-way fixed effects.

3Note that it only needs to be done once.
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To see this, we define an augmented parameter vector β = (θ,a, b),

where a has X components and b has Y . We stack the observed matching

patterns µ̂ into a vector of X ×Y elements in row-major order; and we add

the X values µx0 and the Y values µ0y to form a vector of (X ×Y +X +Y )

elements. For each basis function k = 1, . . . ,K, we stack the matrix ϕ··,k

in a vector in row-major order, and we create an (X × Y,K) matrix ϕ̄

from these K vectors. Using row-major order again, define a vector w with

(X × Y +X + Y ) elements and

wxy = 2, wx0 = 1, w0y = 1 ∀ x, y.

Finally, let

X =


ϕ̄/2 −1

2IX ⊗ 1Y −1
21X ⊗ IY

0X×K −IX 0Y×X

0Y×K 0X×Y −IY

 .

Let (β̃, ã, b̃) be the estimates of the coefficients of the explanatory vari-

ables X in the pseudo-maximum likelihood of the Poisson regression with

dependent variables µ̂ and weights w. Galichon and Salanié (2024) prove

that

• β̃ coincides with the moment-matching estimator β̂;

• û = ã + log n̂ and v̂ = b̃ + log m̂ are consistent estimators of the

expected utilities of the groups of men and women.
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3.2.2.5 Maximum-score Methods

In a series of papers starting with Fox (2010), Fox has developed an empirical

approach to matching with transferable utility that relies on a selecting set of

“matching inequalities.” The intuition behind it is simple when we assume

away unobserved heterogeneity. Suppose for now that all matches between

men and women of given observed types generate the same surplus Φxy:

all ζ and ξ terms are identically zero. Recall that the observed matching

maximizes the social welfare under the scarcity constraint. If we observe

two matches (x, y) and (x′, y′), reshuffling partners cannot increase the sum

of the surpluses from these two matches:

(
Φxy +Φx′y′

)
−
(
Φxy′ +Φx′y

)
≥ 0.

To simplify the notation, we borrow from Chiappori, Salanié, and Weiss

(2017) and we denote Dxy,x′y′(Φ) the double difference above. Let Φxy ≡

ϕ′
xyθ for some set of K basis functions ϕ, as in the semilinear model of Def-

inition 6. For any two observed matches i and j, define the K-dimensional

vector

∆ij ≡ Dxiyi,xjyj (ϕ).

Then for every i < j, we must have ∆′
ijθ ≥ 0. These inequalities define a

convex polytope, the partially identified set for θ. Under reasonable condi-

tions, this set should be small.

Taking this intuition to a model that includes matching on unobservable

types is more challenging. Any generalization of these inequalities must be
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stated in terms of probabilities. In a one-sided choice model, we know that

the probability of choosing an alternative increases with the mean utility of

this alternative. This suggests that the double-difference ∆ij defined above

should be linked to a double-difference of increasing functions of the match-

ing patterns. In fact, this is clearly true in the logit model of Section 2.2.2,

as (2.12) implies that

Dxy,x′y′(Φ) = 2Dxy,x′y′(logµ). (3.3)

In particular,

Dxy,x′y′(Φ) > 0 iff Dxy,x′y′(logµ) > 0. (3.4)

Fox (2010) called this the rank-order property.

Unfortunately, in general all we can say for separable models is that

Dxy,x′y′(Φ) = −Dxy,x′y′
(
∂E
∂µ

,

)
,

which can be a very complicated function of the observed matching patterns.

However, Graham (2011, 2014) proved that if for each value of x (resp. for

each value of y), all error terms ζ(x̃, y) (resp. all error terms ξ(x, ỹ)) are

iid, then the rank-order property holds. Fox (2018) showed that Graham’s

result extends to more general (separable) models of matching; among other

things, he weakened the iid requirement to exchangeability.

While the set of inequalities in (3.4) is less informative than (3.3), it is

valid in a much larger set of models. It covers for instance the heteroskedastic

logit models used in Chiappori, Salanié, and Weiss (2017). On the other
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hand, it does not allow for nested logit or mixed logit structures, which

violate the exchangeability requirement.

Now assume a semilinear Φ again and consider the scalar function

F (θ) ≡
∑
i,j

11
(
∆′

ijθ > 0
)

where i and j range over the set of observed matches. This double sum can

also be rewritten as

F (θ) =
∑
x,y

∑
x′,y′

∑
i,j

11(xi = x, yi = y)11(xj = x′, yj = y′)11

((
Dxy,x′y′(ϕ)

)′
θ > 0

)
.

In this form, it is easy to see that the expected value of F (θ) over a sample

with observed matching patterns µ̂ is

∑
x,y

∑
x′,y′

µ̂xyµ̂x′y′11

((
Dxy,x′y′(ϕ)

)′
θ > 0

)
.

We know from (3.4) that
(
Dxy,x′y′(ϕ)

)′
θ > 0 if and only if Dxy,x′y′(logµθ) >

0, where µθ are the equilibrium matching patterns for parameter values θ.

Much like in Manski (1975), maximizing F (θ) gives a set-valued estimator

of θ that converges to a set that includes the true parameter value.

This approach has two benefits. First, it applies to many-to-one or many-

to-many matching with little modification. Second, it allows the researcher

to select the inequality conditions she wants to impose for estimation: the

sums over x, y and x′, y′ need not include all possible values. This may allow

for more robust inference. On the other hand, the maximum-score method
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minimizes a discontinuous function and only yields a set-valued estimator;

and it only applies to models with exchangeable error distributions.

3.2.3 Extensions

The methodology described in Sections 2.2 and 3.2 can be extended in sev-

eral directions.

3.2.3.1 Using Richer Data

We have assumed so far that the econometrician only observed the match-

ing patterns, “who matches whom”; and that she only observed one large

market, say the marriage market in 2020 in California.

Other important variables can sometimes be observed: they could be

transfers (like wages in labor markets) or proxies for the realized joint sur-

plus. Observing transfers at the match level brings very useful information;

on the other hand, it has little identifying power if it can only be done at the

(x, y) cell level (see (Salanié, 2015)). If elements of the realized joint surplus

can be observed (grades in a student-teacher match, for instance), then they

also can bring useful information (see (Graham, Imbens, and Ridder, 2014)).

To continue with the example of marriage in the US, most marriages

involve partners who live in the same state. This suggests pooling data

on all fifty states, modeled as independent marriage markets, and imposing

that some elements of the specification are constant across states. The same

idea can apply to different age cohorts, as in Chiappori, Salanié, and Weiss

(2017). Studying changes in marriage patterns by education groups for the

cohorts born between 1943 and 1972, they start with a logit model that only



3.2. INFERENCE INMATCHINGMODELSWITH TRANSFERABLE UTILITY109

allows for two-way interactions between the educations and the two partners

and the cohort of the husband:

Φc
xy = Φ0

xy + γcx + δcy.

This simple model cannot account for the observed changes in marriage

patterns among white individuals; it is strongly rejected by the data. It is

necessary to include a linear trend term Φ1
xy × c that represents changes in

the joint surplus across cohorts for given education pairs. Note that both

models are massively overidentified, as the number of parameters is much

lower than the number of marriage patterns µ̂cxy.

Fox, Yang, and Hsu (2018) show that one can in fact use variation across

many markets to identify the distributions of the error terms (in our nota-

tion, Px and Qy). To convey some of the underlying intuition, recall that in

separable models,

Φxy +
∂E
∂µxy

(µ;n,m) = 0

and that the generalized entropy function E depends on the Px and Qy

distributions. Suppose that the matrixΦ is known and varies across markets

(as do the margins n and m), while the unknown distributions Px and

Qy are the same in all markets. Then the shape of the observed mapping

from (Φ,n,m) to µ across markets is informative on the underlying error

distributions. This intuition extends to cases when the matrix Φ is unknown

but its variations across markets are restricted.

Many-to-one and many-to-many matching markets also contain infor-

mation that helps identify the weights of different variables in the joint
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surplus. To see this, consider worker-employer matches, as a stylized many-

to-one market. Suppose that employers care only about the productivity of

each employee, and that they observe workers’ education and past job ex-

perience. Everything else equal, the range of variation of education between

employees of a given firm will be greater if employers value job experience

more. This is useful identifying information to an econometrician who only

observes education and not job experience. This insight was used by Agar-

wal (2015) in non-transferable utility setting and formalized by Diamond

and Agarwal (2017).

Observing transitions between matches can also be very helpful, espe-

cially if transfers or proxies for the surplus are observed. The labor market

is a prominent example. In their pioneering work with matched employer-

employee data, Abowd, Kramarz, and Margolis (1999) assumed that job

mobility was exogenous. More recent contributions, such as Bonhomme,

Lamadon, and Manresa (2019), allow for worker sorting across firms. When

transfers are not observed, as in marriage markets, changes in labor sup-

ply or consumption patterns within households can serve as a proxy—see

Goussé, Jacquemet, and Robin (2017).

3.2.3.2 Matching without Singles

Sometimes the data only contain realized matches: singles are not observed.

The adding up constraints become

Y∑
y=1

µxy = nx for all x ;

X∑
x=1

µxy = my for all y,



3.2. INFERENCE INMATCHINGMODELSWITH TRANSFERABLE UTILITY111

and the total numbers of men and women must be equal:

X∑
x=1

nx =
Y∑

y=1

my.

Suppose that the data-generating process has a joint surplus matrix Φ. If

we add arbitrary numbers ax and by to its elements, the total joint surplus

for a feasible matching µ must increase by

∑
x,y

µxy(ax + by) =
∑
x

axnx +
∑
y

bymy.

Since this takes the same value for all feasible matchings µ, the stable match-

ing cannot change. As a consequence, ax and by cannot be identified. To put

it differently, only the double differences of the Φ matrix can be identified.

If for instance the joint surplus is linear in the parameters as in Definition 6:

Φxy = ϕxy · β,

then the coefficients of those basis functions that do not interact x and y

are not identified.

Another way to see this is that since

Gx(Ux·) = Emax
y∈Y

(Uxy + εy),

for any µ·|x such that
∑Y

y=1 µy|x = 1 the value of
(∑y

y=1 µy|xUxy −Gx(Ux·)
)

is unchanged in all translations Ux· → Ux· + ax. As a consequence, the

subgradient of the Legendre-Fenchel transform at µ·|x is a whole line, and
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the generalized entropy E also has a subgradient that is invariant by this

group of transformations.

More precisely, the identifying inclusion

Φ ∈ ∂E(µ;n,m)

can be rewritten as the equality

D2Φ =D2 ∂µE(µ;n,m)

where D2 is the double differencing (X × Y,X × Y ) matrix: for a vector

c = (cxy),

(D2c)xy = cxy −
1

Y

Y∑
t=1

cxt −
1

X

X∑
z=1

czy +
1

XY

X∑
z=1

Y∑
t=1

czt.

Minimum Distance Estimation without Singles The matrixD2 only

has rank (X − 1)× (Y − 1). To avoid zero eigenvalues in the variance that

is used in the optimal weighting matrix, one should premultiply D2 by a

((X−1)(Y −1), XY ) matrix A such that AD2 is invertible. The identifying

equations become

AD2 Φ = AD2 ∂µE(µ;n,m).

The minimum distance estimator can be applied to the resulting mixed

hypothesis, as in Section 3.2.2. If the efficient weighting matrix is used, the

χ2 specification test statistic has (X +Y − 1) fewer degrees of freedom than

when singles are observed.
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Poisson Estimation without Singles The Poisson-GLM estimator of

Section 3.2.2.4 is easily adapted to the Choo and Siow homoskedastic model

without singles. The weights are now wxy = 2 and the X matrix simplifies

to

X =

(
ϕ̄/2 −1

2IX ⊗ 1Y −1
21X ⊗ IY

)
.

The first-order conditions of the Poisson estimator are

∑
x,y

Xxy exp((ϕxyγ − ux − vy)/2) =
∑
x,y

Xxyγ.

Even if all basis functions ϕkxy interact x and y, only the sums of the ex-

pected utilities ux + vy are identified in the absence of singles. Therefore

one normalization condition must be imposed when estimating the model.

If we fix say u1 = 0, we can drop the first column of X. All other utility

estimates must be interpreted accordingly.

3.2.3.3 Roommate Matching

Same-sex marriage has become legal in more and more countries across the

world. More generally, many one-to-one matching situations do not restrict

partners to belong to two separate subpopulations, as bipartite matching

does. Gale and Shapley (1962) used the term “roommate matching” to

refer to such markets. They showed that a stable matching may fail to ex-

ist: since anyone can match with anyone, the number of potential blocking

coalitions may just be too large. While their model excluded transfers, later

literature showed that this result extends to the TU world. Chiappori, Gali-
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chon, and Salanié (2019) showed that in large roommate matching markets,

a stable matching always exists. Their paper also demonstrates a simple

way to reformulate any such market as a bipartite market; identification

and estimation results can then be translated from the latter to the former.

This was extended to models with continuous observed types by Ciscato,

Galichon, and Goussé (2020), building on the methods of Dupuy and Gali-

chon (2014) described in Section 3.2.3.4 below. Using data on Californian

households from 2008 to 2012, they find that same-sex couples display less

preference for assortative matching than different-sex couples with respect

to ethnic background, and more for education.

3.2.3.4 Continuous Observed Characteristics

As is well-known, continuous-choice models are not a natural limit of discrete-

choice models. A multinomial logit with m alternatives, for instance, yields

an expected utility that increases like log(m), so that the Emax functions

are not well-defined when there is an infinity of alternatives. Dagsvik (1994)

proposed a clever solution to this conundrum in a matching framework. Con-

sider a man x̃ = (x, ε). In a separable model, we know that in equilibrium

there exists a function U : X × Y → R such that this man will choose the

observed type y of his partner by maximizing U(x, y) + ζ(x, y, ε). Suppose

that each individual can only match with partners they randomly meet;

Dagsvik (1994) showed that if meetings are generated as the points of a

Poisson process with a well-chosen intensity, this results in formulæ that are

the continuous analog of those that Choo and Siow (2006) obtained for the

discrete logit model of Section 2.2.2.
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More precisely, let the full types ỹm = (ym, ηm) of women for m ≥ 1

be draws from a Poisson process on the set of full types with intensity

dy×exp(−η). Then it can be shown that the probability density on matches

for the average man with an observed type x is

µ(y|x) = exp(U(x, y))

1 +
∫
exp(U(x, t))dt

,

and that this man stays single with probability

µ(0|x) = 1

1 +
∫
exp(U(x, t))dt

.

Expected utilities are finite and given by u(x) = − logµ(0|x) = log(1 +∫
exp(U(x, t))dt), which is the direct equivalent of the Gx function in the

discrete version of the model. Dupuy and Galichon (2014) showed how the

techniques described in previous sections extend naturally to this continuous

logit model. They used a Dutch survey to estimate the effect of the “big

five” personality traits on marriage patterns. Bojilov and Galichon (2016)

derived closed-form formulæ for the special case when in addition Φ(x, y) is

quadratic and the observed types x and y are normally distributed.

Lindenlaub (2017) used a quadratic-Gaussian model with bivariate ob-

served types to disentangle the effects of skill-biased and task-biased tech-

nological change. Her approach differs from that adopted in this survey: her

model has agents and firms matching on observables only, and she introduces

error terms at the estimation stage.

Guadalupe, Rappoport, Salanié, and Thomas (2024) build on Dupuy
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and Galichon (2014) to estimate a model with both discrete and contin-

uous characteristics. The resulting formulæ are natural extensions of the

fully continuous case: if observed types y have discrete components yd and

continuous components yc, then

µ(yd, yc|x) =
exp(U(x, (yd, yc)))

1 +
∑

td

∫
exp(U(x, (td, tc)))dtc

.

They use this specification to study mergers between European firms; in

their application, the discrete characteristics are industry and country, and

the continuous characteristics are productivity and size.

To the best of our knowledge, the literature has not come up with a

continuous separable model that goes beyond the logit structure, with its

appealing simplicity but also its restrictive properties.

3.2.3.5 Index Models

The great appeal of the separable approach is that by ruling out inter-

actions between unobserved characteristics of agents on the two sides of

the market, it makes it much easier to identify and estimate matching and

hedonic models. An alternative approach assumes that agents of a given

(observed) type all use the same low-dimensional index to choose between

alternatives. As this is not a very appealing assumption when types are dis-

crete, we now assume that they are continuous; we denote x = (x1, . . . , xJ)

and y = (y1, . . . , yK) the observed types, with full types x̃ = (x, ε) and

ỹ = (y, η).
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Chiappori, Oreffice, and Quintana-Domeque (2012, 2020) pioneered the

study of index models. They assumed the following:

Definition 7 (Matching by Indices).

(i) all women value the observed types of men with the same scalar index

of marital attractiveness x̄ = g(x), and all men value the observed

types of women with the same scalar index ȳ = h(y). The joint utility

formed by a match of x̃ = (x, ε) and ỹ = (y, η) only depends on the

values of these two indices and on the unobserved types:

Φ̃(x̃, ỹ) = Φ(x̄, ȳ, ε, η);

(ii) ε (resp. η) is independent of x conditional on x̄ (resp. of y conditional

on ȳ).

Note that both parts of this assumption are important: if for instance

(ii) failed, agents on one side of the market would value unobserved charac-

teristics differently.

Some models in this class are separable; a very simple example would be

Φ(x̄, ȳ, ε, η) = x̄ȳ + ε+ η.

Diamond and Agarwal (2017) focussed on a different case: the “doubly

vertical” subclass for which Φ(x̄, ȳ, ε, η) = Φ̄(x̄+ε, ȳ+η) with a supermodular

Φ̄, and ε (resp. η) independent of x (resp. y).

Chiappori, Oreffice, and Quintana-Domeque (2012) showed that in mod-

els that satisfy (i) and (ii), the distribution of x̄ conditional on y across
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couples only depends on ȳ, and vice-versa. In more compact form,

x̄ ⊥⊥ y | ȳ and ȳ ⊥⊥ x | x̄.

If we knew one of the two indices, say x̄, we could estimate the other index

ȳ by running a nonparametric regression of x̄c on yc across the observed

couples c = 1, . . . , C. In general, we know neither x̄ nor ȳ; we can only

regress x on y, or the reverse. This is a problem since as shown by Chiappori,

Oreffice, and Quintana-Domeque (2020), all matchings that map x̄ to ȳ

in the same way are stable. More concretely, if a matching with couples

(xc,yc)
C
c=1 is stable, then any other matching with couples (x′

c,y
′
c)

C
c=1 such

that

g(x′
c) = g(xc) and h(y′c) = h(yc) for all c = 1, . . . , C

is also stable.

As shown by Guadalupe, Rappoport, Salanié, and Thomas (2024), the

continuous logit model is one favorable case in which regressing x on y will

identify the index ȳ. To see this, remember that in the logit model

µ(x,y) =
√
µ(x, 0)µ(0,y) exp(Φ(x,y)/2).

Suppose that Φ(x,y) = Φ̄(x̄, ȳ). The conditional expectation of x given y,

across observed couples, is

E(x|y) =
∫
xµ(x,y)dx∫
µ(x,y)dx

=

∫
x
√
µ(x, 0) exp(Φ̄(x̄, ȳ)/2)dx∫ √
µ(x, 0) exp(Φ̄(x̄, ȳ)/2)dx
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which only depends on y via ȳ. Therefore for any component j = 1, . . . , J ,

we have

E(xj |y) = fj(ȳ)

for some scalar function fj . This generates testable implications as the

“marginal rates of substitution”

∂E(xj |y)
∂yk

∂E(xj |y)
∂yl

=

∂ȳ

∂yk
∂ȳ

∂yl

must be the same for all j = 1, . . . , J . These equations identify the index ȳ

up to an invertible transformation that is economically irrelevant.

Dupuy and Galichon (2014) developed inference procedures for a differ-

ent version of the semilinear logit model. Suppose that Φ (x,y) = x′Ay =∑n
i=1

∑m
j=1Aijxiyj , where A is an unknown “affinity matrix”; and that the

error terms have the structure described in Section 3.2.3.4. If A is a rank

one matrix, then it can be written as A = uv′, where u and v are two col-

umn vectors defined up to a multiplicative scalar. In that case, g(x) = x′u

and h(y) = v′y can be interpreted as one-dimensional attractiveness indices.

More generally, if A is of rank p then Φ(x,y) can be written as a sum of

products of indices:
∑p

k=1(x
′uk)(v

′
ky). Dupuy and Galichon (2014) show

how A can be estimated, and how to test for its rank. Alternatively, if the

rank of A is imposed it can be estimated using a rank-constrained procedure

(see (Dupuy, Galichon, and Sun, 2019)).
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3.2.3.6 Many-to-one and Many-to-many Matching

When each match may consist of more than two partners, there may not

exist a stable matching. This has been known since the work of Kelso

and Crawford (1982) on matching with transfers in the labor market. The

underlying intuition is most simply seen by thinking of convergence towards

a stable matching. If hiring a worker makes another worker more valuable to

a firm, this complementarity may hinder convergence, just as in a Walrasian

tâtonnement process or in simultaneous ascending auctions. Many papers

since then have extended this finding and made it more precise.

Assuming away complementarities is one strategy, which is not always

very credible. Recent literature (e.g Fox, 2018) instead switched focus from

stable outcomes to competitive equilibria. In large markets, a competitive

equilibrium typically exists and is efficient (Azevedo and Hatfield, 2018).

As such, it maximizes social welfare under the scarcity constraints—which

is exactly what we have been doing in Section 1.3.2.

So far, the maximum-score methods developed by Fox (2010, 2018) have

dominated applications in one-to-many and many-to-many markets. Bajari

and Fox (2013) modeled the stability of the FCC spectrum license auctions

in the mid 1990s. The license seller (the US government) has very restricted

preferences; still, this was a matching game as resale among participants is

permitted, and in fact quite an active secondary market exists. Bajari and

Fox (2013) assumed that the allocation of licenses was pairwise stable: an

exchange of two licenses by winning bidders could not have raised the sum of

the valuations of the two bidders. Their estimates suggest that given large
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complementarities between licenses, packaging them by (large) region would

have raised the allocative efficiency of the auction.

Fox (2018) applied these methods to a many-to-many market: matching

between car parts suppliers and assemblers. The unit of observation is a

“trade”: a supplier selling a car part to an assembler. Each supplier may

sell various car parts to different assemblers, and vice-versa. Since car parts

need to fit together and there are economies of scope, the valuation function

of each firm depends on its whole portfolio of trades and is not additively

separable across its trades. With hundreds of suppliers, eleven assemblers,

and more than 30,000 car parts, Fox (2018) could generate a huge number

of matching inequalities. He chose to randomly sample among them.

The methods we developed for a bipartite market under separability

extend readily to some other markets; we only develop one example here.

Suppose that each match on the labor market must associate a firm x̃ =

(x, ε) and at most one worker in each of p tasks. We denote a worker in task

k = 1, . . . , p as ỹk = (yk, ηk), and we assume that this worker cannot work

in another task. In a separable model, the joint utility from a match of firm

x̃ and workers ỹ = (ỹ1, . . . , ỹp) is

Φ(x,y) + ε(y) +

p∑
k=1

ηk(x,y−k),

where y = (y1, . . . , yp) and y−k denotes y minus its k-th component—that

is, the observed types of workers in all tasks except task k. This separability

assumption allows the value-added of a task-k worker to vary both with the

observed types of firms and with the observed types of workers in other tasks
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in that firm. We allow for unfilled tasks yk = 0 in the obvious way.

It is easy to extend Theorem 6 to this (p + 1)-partite separable model.

There exist functions U(x,y) and V k(x,y) for k = 1, . . . , p that add up to

Φ(x,y) such that in equilibrium:

• firm f ∈ x matches with workers of observed types y that jointly

achieve the maximum of U(x,y) + εf (y);

• a worker ỹk in task k matches with a firm of observed type x and

workers of observed types y−k that jointly achieve the maximum of

V k(x,y) + ηk(x,y−k).

As in Section 2.2, one can define Emax functionsGx andHyk , their Legendre-

Fenchel transforms, and a generalized entropy. The identification equa-

tion (2.9) becomes

Φ(x, y) =
∂G∗

x

∂µ(y|x)
(µ(·|x)) +

p∑
k=1

∂H∗
yk

∂µ(x,y−k|yk)
(µ(·|yk)).

All of our results in Section 3.2 adapt straightforwardly to this one-to-many

setting.

In the logit model for instance, the Choo and Siow formula (2.12) be-

comes

Φ(x,y) = log
µ1+p
xy

µx0
∏p

k=1 µ0yk
.

Corblet (2022) uses this variant of the logit model to examine how workers

in different age and education groups sort across firms in different industries

on the Portuguese labor market. In her application, what we denoted k

is a worker age-education group, rather than a task, and firms choose how
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many workers of each group they want to hire. These two models have a

very similar structure. Let yk representing the number of workers in group

k that the firm hires. Then the joint utility is

Φ(x,y) + ε(y) +

p∑
k=1

ykηk(x,y−k);

a worker in group k maximizes Vk(x,y
−k) + ηk(x,y−k), where

U(x,y) +

p∑
k=1

ykVk(x,y
−k) = Φ(x,y);

and in the logit model, the identification formula is

Φ(x,y) = log
µ(x,y)

µ(x, 0)
+

p∑
k=1

yk log
ykµ(x,y)

µ(0, k)
.

3.2.3.7 Skill Bundling

Heckman and Scheinkman (1987) emphasized that workers should really be

seen as bundles of skills that cannot be sold separately on the labor market.

As a consequence, firms are constrained in the total vectors of skills they

can acquire. To make this more precise, suppose that a worker of type i

can be described as a bundle ỹ = (ỹ1, . . . , ỹS), where ỹs is that worker’s

endowment of skill s. Skill bundling implies that a firm can only acquire

restricted combinations of skills. To take an extreme example, firms in a

particular industry may only use worker skill s = 2; yet that skill will only

come bundled with other skills that have zero value in this industry.

Let us denote F̃j(a
1, . . . , aS) the value of the output of the representative
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firm in industry j when it uses as units of skill s = 1, . . . , S; we assume

that Fj is increasing, continuously differentiable and concave. Given skill

bundling, each as is a weighted sum
∑

i µij ỹ
s
i , where µij = 1 is the number

of workers of type i employed by industry j.

In a competitive equilibrium, industry j offers a vector of wages (wij)i.

If workers of type i face disutility dij from working in industry j, their

equilibrium utility is simply

ui = max
j

(wij − dij).

The labor demands µ·j of industry j maximize its profit

Fj

(∑
i

µijỹi

)
−
∑
i

µijwij

under the constraints that each µij ≥ 0 (neglecting integer constraints for

simplicity).This gives the first-order conditions

∑
s

∂Fj

∂ajs
(aj1, . . . , ajS) ỹ

s
i ≤ wij ,

with equality if µij > 0. This shows that if industry j does employ workers

of type i, then their wage can be written as

wij =
∑
s

ysi w̄
s
j .

Therefore each industry j uses a vector of skill-specific wage rates w̄j to

compensate workers. These wage rates equal the marginal productivities of
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the corresponding skill in that industry.

If skills could be “unbundled” and hired separately, productive efficiency

implies that all industries should use the same skill-specific wage rates: w̄s
j ≡

w̄s for all industries that use skill s. Heckman and Scheinkman (1987)

show that with skill bundling, there may exist equilibria in which different

industries apply different skill-specific wage rates: ws
j ̸= ws

k. These occur

in “boundary cases” in which the set of productively optimal allocations of

worker skills to firms hits the boundary of the set of feasible allocations,

given the restrictions implied by skill bundling.

It is tempting to bring this model inside the matching framework. The

joint surplus from a match between the representative firm in industry j and

numbers (µij)i of the different types of workers is the value of the output

minus the sum of workers’ disutilities:

Fj

(∑
i

µijỹi

)
−
∑
i

µijdij

The stable matching maximizes the sum of these surpluses across indus-

tries, under the usual constraints on the number of workers of each type:∑
j µij ≤ ni. If the production functions Fj are not linear, the total sur-

plus is not a linear function of the matching patterns µ. This makes the

analysis of this model more intricate. Choné and Kramarz (2022) use the

techniques of “weak optimal transport” (see Gozlan, Roberto, Samson, and

Tetali, 2017) to study the properties of the set of stable matchings. They

show that technological innovations such as platforms, by making skill un-

bundling easier, benefit workers with specialized skills more than “gener-
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alists”; moreover, specialized firms tend to specialize even further. Skans,

Choné, and Kramarz (2021) validates these predictions on the Swedish labor

market.

3.2.4 Imperfectly Transferable Utility

Recall that in separable matching models with imperfectly transferable util-

ity, equation (2.15) holds:

Dxy

(
∂G∗

x

∂µy|x

(
µ·|x

)
,
∂H∗

y

∂µx|y

(
µ·|y

))
= 0.

Suppose that we parameterize the distance functionDxy and the distribution

Px and Qy with some vector of unknown parameters θ. We can write the

following mixed hypothesis:

there exists θ such that for all (x, y), Dθ
xy

(
∂G∗,θ

x

∂µy|x

(
µ·|x

)
,
∂H∗,θ

y

∂µx|y

(
µ·|y

))
= 0.

Given estimates µ̂, this can be used as the basis for a minimum distance

estimator of θ, just as in Section 3.2.2.

Let us illustrate this on the logit model, which only has parameters in

the distance function. Using (2.17), the mixed hypothesis is

there exists θ such that for all (x, y), logµxy+D
θ
xy

(
− logµx0,− logµ0y

)
= 0.

Suppose that utility is close to perfectly transferable: the utility pos-

sibility frontier is defined by the set of U, V such that exp(λ(U − αθ
xy)) +

exp(λ(V − γθxy)) = 2 for a small unknown λ > 0. We let Φθ
xy = αθ

xy + γθxy.
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Since we assumed that λ is small, we approximate exp(λt) ≃ 1+λt+λ2t2/2.

Simple calculations show that up to a first-order approximation in λ,

Dθ
xy(u, v) =

u+ v − Φxy

2
+
λ

4
(
(
u− αθ

xy

)2
+
(
v − γθxy

)2
−
(
u− αθ

xy

)(
v − γθxy

)
).

The first term on the right-hand side corresponds to the case of perfectly

transferable utility; the second term reflects the effect of the costs of utility

transfers. In the end the mixed hypothesis can be approximated by

log
µ2xy

µx0µ0y
= αxy + γxy

+
λ

2


(
log

µxy

µx0
− αθ

xy

)2
+
(
log

µxy

µ0y
− γθxy

)2
−
(
log

µxy

µx0
− αθ

xy

)(
log

µxy

µ0y
− γθxy

)
 ,

where we recognize the Choo and Siow formula (2.12) when λ = 0. Given a

parameterization of α, γ, and λ, this can be estimated by minimum-distance

for instance. One could also run a test for the hypothesis λ = 0 of perfectly

transferable utility.

Maximum likelihood estimation is also possible. Just as in Section 3.2.2,

the log-likelihood of the sample is

∑
xy∈X×Y

µ̂xy lnµ
θ
xy +

∑
x∈X

µ̂x0 lnµ
θ
x0 +

∑
y∈Y

µ̂0y lnµ
θ
0y − N̂ lnN θ,

where the number of households at the stable matching Nθ is given by

Nθ =
∑
x∈X

µθx0 +
∑
y∈Y

µθ0y +
∑

xy∈X×Y
µθxy.
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This has a nice interpretation in the ITU model with logit heterogeneity.

For a given parameter vector θ, the numbers of matches can be defined by


µθxy = exp

(
−Dθ

xy (ux, vy)
)

µθx0 = exp (−ux)

µθ0y = exp (−vy) ,

where ux and vy are the average utilities of each observed type at the stable

matching. The first order conditions of the MLE can be rewritten as

µ̂x0

N̂
+
∑
y∈Y

µ̂xy

N̂

∂Dθ
xy (ux, vy)

∂ux
=

µθ
x0

Nθ +
∑

y∈Y
µθ
xy

Nθ

∂Dθ
xy(ux,vy)

∂ux

µ̂0y

N̂
+
∑
x∈X

µ̂xy

N̂

∂Dθ
xy (ux, vy)

∂vy
=

µθ
0y

Nθ +
∑

y∈Y
µθ
xy

Nθ

∂Dθ
xy(ux,vy)

∂vy

∑
xy∈X×Y

µ̂xy

N̂

∂Dθ
xy (ux, vy)

∂θk
=
∑

xy∈X×Y
µθ
xy

Nθ

∂Dθ
xy(ux,vy)

∂θk
.

The interpretation of these equations is clear: the MLE ensures that certain

moments predicted by the parameter value (u, v,θ) match their empirical

counterparts. The first set of equations matches the observed and fitted

moments of ∂Dθ
xy/∂ux; this is the partial derivative of the distance func-

tion with respect to the average utility of agents of type x. With perfectly

transferable utility, this quantity is 1/2 uniformly. When utility is imper-

fectly transferable, it can be shown that the vector (∂Dθ
xy/∂ux, ∂D

θ
xy/∂vy)

is tangent to the feasible utility set for (x, y) couples.
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3.3 Inference in Hedonic Equilibrium Models

We focus here on the class of hedonic markets of Section 2.3.3, where agents

are endowed with quasilinear utilities, with and additively separable unob-

served heterogeneity and finite sets of observed types and products. We

denote the utilities

U(x̃, z;P ) = Ūxz − Pz + ζ x̃z and V (ỹ, z;P ) = V̄yz + Pz + ξỹz

and we let µ̂z|x and µ̂z|y denote the estimated choice probabilities of buyers

and sellers.

If prices are observed, the function P is identified from the data and the

most direct way to estimate the model is simply to estimate separately the

models for individual demand and for individual supply, using for instance

the results in Section 3.1.

If on the other hand the data has no information on prices, we can

base a minimum-distance estimator on the formula that we derived in Sec-

tion 2.3.3.2:

Ūxz + V̄yz =
∂G∗

x

∂µ(·|x)
(µz|x) +

∂H∗
y

∂µ(·|y)
(µz|y).

Let us parameterize the functions Ū and V̄ and the distributions Px and

Qy with an unknown vector θ (and normalize their location). Then we can

estimate θ by minimizing the norm of a vector with components

Ūθ
xz + V̄ θ

yz =
∂G∗θ

x

∂µz|x

(
µ.|x

)
+
∂H∗θ

y

∂µz|y

(
µ.|y

)
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for all or a subset of (x, y, z) 3-uples, given a consistent estimator µ̂ of µ.

In a logit model, the right-hand side is simply

log
µ̂xzµ̂yz
µ̂x0µ̂y0

.

Assume moreover that the buyer and seller utility functions are linear: Ūθ
xz =∑K

k=1 ϕ
k
xzθk and V̄ θ

yz =
∑K

k=1 ψ
K
yzθk (letting e.g. ψk = 0 if ϕk only makes

sense for buyers). Then the mixed hypothesis is

there exists θ such that for all x, y, z,
K∑
k=1

(
ϕkxz + ψk

yz

)
θk = log

µxzµyz
µx0µy0

.

Just as in Section 3.2.2, θ can be estimated by GLS. The logarithm can cause

difficulties in hedonic models, where many (x, y, z) cells may be empty. The

Poisson estimator of Section 3.2.2 circumvents this issue. One can prove the

following result:

Theorem 11. For given θ, consider the convex optimization problem

max
u,v,p



∑
x∈X
z∈Z

Uθ
xzµ̂xz +

∑
y∈Y
z∈Z

V θ
yzµ̂yz −

∑
x nxux −

∑
ymyvy

−
∑

x∈X
z∈Z

nx exp
(
Uθ
xz − ux − pz

)
−
∑

x∈X nx exp (−ux)

−
∑

y∈Y
z∈Z

my exp
(
V θ
yz − vy + pz

)
−
∑

y∈Y my exp (−vy)


.

Let F (θ) denote its value, and define θ̂ to be a minimizer of the function F .

Then

(i) θ̂ is a consistent and asymptotically normal estimator of θ.

(ii) in a semilinear model, F is a convex function and θ̂ can be obtained
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by running a Poisson regression of the stacked vector

µ̂ =
(
(µ̂xz)

′
x,z, (µ̂yz)

′
y,z, (µ̂x0)

′
x, (µ̂y0)

′
y

)
on the rows of the matrix

M =



ϕ −1|X | ⊗ I|Z| −I|X | ⊗ 1|Z| 0|X ||Z|×|Y|

ψ 1|Y| ⊗ I|Z| 0|Y||Z|×|X | −I|Y| ⊗ 1|Z|

0|X |×K 0|X |×|Z| −I|X | 0|X |×|Y|

0|Y|×K 0|Y|×|Z| 0|Y|×|X | −I|Y|


.

Let λ̂ be the estimated coefficients—that is, the solution of

max
λ

(
1′ exp (Mλ)− µ̂′) ;

then θ̂ consists of the first K components of λ̂.
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Chapter 4

Computation

Suppose we are given a complete specification of a hedonic market: the

distributions of buyer and seller types, their preferences, and the set of

products. This could for instance result from applying the identification and

estimation procedures of Sections 2.3 and 3.3 to data. We may then want to

compute the equilibrium prices and allocations for different counterfactuals.

While we solved for equilibrium in a simple quadratic instance of a hedonic

market in Section 1.2.2, the method we applied does not extend easily to

more complex models. We show here how solving for the hedonic equilibrium

can be reformulated as a network flow problem, for which fast algorithms

are readily available.

In separable matching models, we obtained formula (2.10):

Φxy = − ∂E
∂µxy

(µ;n,m).

Ir gives a very convenient way to identify the joint utility matrix Φ when

133
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the distributions (Px) and (Qy) are known, given the matching patterns

µ and the margins n and m. It is often necessary to solve in the other

direction, however: given the specification (Φ, (Px), (Qy)) of a separable

model, and the margins n andm, what are the stable matching patterns µ?

We will present the IPFP algorithm and several alternative computational

approaches.

4.1 Solving for Hedonic Equilibria

We focus here on the quasi-linear case, when buyer and seller utilities are

given by

U(x̃, z, P (z)) = Ū(x̃, z)− P (z)

V (ỹ, z, P (z)) = V̄ (ỹ, z) + P (z)

so that a sale of one unit of z by x̃ to ỹ creates a joint surplus Ū(x̃, z) +

V̄ (ỹ, z). The hedonic equilibrium consists of measures µD on X̃ ×Z and µS

on Ỹ × Z that maximize the total joint surplus

S(µ, µS) :=

∫
X̃×Z

Ū(x̃, z)µD(dx̃, dz) +

∫
Ỹ×Z

V̄ (ỹ, z)µ(dỹ, dz)

under three types of constraints:

C1: there exists a price function P (z) such that buyers only buy products

that maximize their net utility, and sellers only sell products that

maximize theirs. That is, for almost every x̃ (resp. ỹ) the support of

the conditional measure µD(·|x̃) (resp. µS(·|ỹ)) on Z is contained in
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the set of z values that maximize Ū(x̃, z)−P (z) (resp. V̄ (ỹ, z)+P (z)).

C2: each buyer buys at most, and each seller sells at most, one unit of

product; so that

∫
Z
µD(dz|x̃) ≤ 1 for almost all x̃

and ∫
Z
µS(dz|ỹ) ≤ 1 for almost all ỹ.

C3: demand equals supply for each product:

∫
X̃
µD(dx̃, dz) =

∫
Ỹ
µS(dỹ, dz) for all z.

The objective function S and the constraints C2 and C3 are linear in the

measures µD and µS . Unfortunately, the constraints in C1 are not; this is

what makes solving for equilibrium a non-trivial task in hedonic markets1.

Following a suggestion from Maurice Queyranne (Queyranne (2011)), we

will reformulate this constrained optimization program as a minimum cost

network flow problem. This has the great advantage that many powerful

algorithms are available to solve such problems2.

To do so, we construct a simple network whose nodes are the sellers, the

products, and the buyers. Sellers and buyers are only linked indirectly, via

their links to products. The sale of a product z by ỹ to x̃ is represented as a

1Note in passing that under C1, the conditional measures µD(·|x̃) and µS(·|ỹ) coincide
with the measures π̃D(·|x̃;P ) and π̃S(·|ỹ;P ) that we defined in Section 1.2.

2See Ahuja, Magnanti, and Orlin (1993) or Williamson (2019).
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Figure 4.1: Hedonic Equilibrium as a Network Flow

Only some of the values of the flow are indicated.

unit mass that flows into the network at ỹ, transits on the ỹ → z link, then

on the z → x̃ link, and finally exits the network at x̃. Figure 4.1 illustrates

this; to simplify the picture, we only show some of the values of the flows. In

addition, we leave out flows to and from z = 0, which correspond to buyers

and sellers who fail to transact with probability one.

In the language of network flow models, the seller nodes are sources and

the buyer nodes are destinations. Each source ỹ is endowed with m̃(ỹ) units

of mass, and each destination x̃ has a capacity limit of ñ(x̃). These limits

correspond to the C2 constraints above. In addition, masses of products

must be balanced: the flows into a product node z must equal the flows out
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of this node. These mass balance conditions are exactly the C3 constraints.

All that is left is to translate the objective function into the cost of the

network flow. This is achieved simply by assigning to a unit flow from ỹ to

z (resp. from z to x̃) a cost −V̄ (ỹ, z) (resp. −Ū(x̃, z)), so that the total cost

of the network flow is

−
∫
Ỹ×Z

V̄ (ỹ, z)µS(dỹ, dz)−
∫
X̃×Z

Ū(x̃, z)µD(dx̃, dz),

which is exactly the opposite of the joint surplus.

Finally, note that it would be easy to extend this analogy to hedonic mod-

els where agents can trade varieties in less constrained quantities. Denote

Ū(x̃, q) − PB(q) the utility of a buyer who purchases quantities (q(z))z∈Z

and V̄ (ỹ, Q)+PS(Q) the utility of a seller who produces and sells quantities

(Q(z))z∈Z . Each elementary flow now has weight q(z) or Q(z); the balance

conditions C3 are

∫
X̃
q(z)µD(dx̃, dq) =

∫
Ỹ
Q(z)µS(dỹ, dQ)

for each variety z. In this reformulation, the scarcity constraints C2 may be

unnecessary if Ū and V̄ are concave in q. On the other hand, the link between

the functions PB and PS will depend on restrictions on pricing. Linear

pricing, for instance, would have PB(q) =
∫
z∈Z q(z)p(z)dz and PS(Q) =∫

z∈Z Q(z)p(z)dz for a common function p.
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4.1.1 The Primal Problem

Solving for µD and µS that minimize the cost of this network flow under the

constraints C2 and C3 gives us the measures that constitute the hedonic

equilibrium. Moreover, the multipliers of the scarcity constraints C2 are

the buyer and seller utilities

u(x̃) = max

(
0,max

z∈Z

(
Ū(x̃, z)− P (z)

))
v(ỹ) = max

(
0,max

z∈Z

(
V̄ (ỹ, z) + P (z)

))
,

where the 0 accounts for buyers and sellers who may not want to trade.

Finally, the equilibrium prices P (z) are the multipliers of the mass balance

conditions C3.

4.1.2 The Dual Problem

Sometimes the dual form of the problem is easier to solve. The unknowns

here are given by the three functions ũ, ṽ, and P . We combine them in

a potential function W over the set N ≡ Ỹ ∪ Z ∪ X̃ of all nodes. More

precisely, we define W (ỹ) = v(ỹ); W (z) = P (z); and W (x̃) = u(x̃). Clearly,

the value of the total joint surplus is the sum of the equilibrium utilities of

all buyer and seller types:

∫
X̃
W (x̃)ñ(dx̃) +

∫
Ỹ
W (ỹ)m̃(dỹ).
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By construction, W is non-negative. The following inequalities hold every-

where:

Ū(x̃, z)− u(x̃) ≤ P (z) ≤ v(ỹ)− V̄ (ỹ, z) (4.1)

with equality on the left (resp. on the right) on the support of µ(dx̃, ·) (resp.

µS(dỹ, ·)). These inequalities can be rewritten as

W (x̃) +W (z) ≥ Ū(x̃, z) and W (ỹ)−W (z) ≥ V̄ (ỹ, z)

Now define a sign function over the set of all nodes as σ(x̃) = 1, σ(z) = −1

and σ(ỹ) = −1. We can rewrite the inequalities on W as

σ(x̃)W (x̃)− σ(z)W (z) ≥ Ū(x̃, z)

σ(z)W (z)− σ(ỹ)W (ỹ) ≥ V̄ (ỹ, z).

Let f be a function defined over the nodes of the network. In network

flow terminology, the difference between the values of f at the two ends of

a link a → b is called its gradient (∇f)a→b = f(b) − f(a); it is a function

over the links of the network. Since our links go from ỹ to z and from z to

x̃, we can finally rewrite the inequalities as

∇(σW ) ≥ ψ

where the function ψ is defined over the links of the network; it takes the

value Ū(x̃, z) for a z → x̃ link and V̄ (x̃, z) for a ỹ → z link.

Putting everything together, we obtain the equilibrium utilities ũ, ṽ and
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the equilibrium price function P from the function W : N → R that mini-

mizes ∫
X̃
W (x̃)ñ(dx̃) +

∫
Ỹ
W (ỹ)m̃(dỹ)

under the constraints W ≥ 0 and ∇(σW ) ≥ ψ. Moreover, the measures µD

and µS are obtained as the multipliers of the gradient constraints for the

corresponding links at the optimum.

4.2 Solving for equilibrium matchings

Applying convex duality to equation (2.10) gives us

µxy =
∂F
∂Φxy

(Φ;n,m),

where F := (−E)∗ is the Legendre–Fenchel transform of the opposite of the

generalized entropy.

While this formula does give the equilibrium matching patterns for any

separable matching problem, there are much better ways to solve for the

equilibrium. Consider the logit model of Section 2.2.2 for instance. Let us

rewrite (2.12) as

µxy =
√
µx0µ0y exp(Φxy/2).

Substituting into the adding up equations µx0 +
∑Y

y=1 µxy = nx and µ0y +



4.2. SOLVING FOR EQUILIBRIUM MATCHINGS 141

∑X
x=1 µxy = my gives

a2x + ax

Y∑
y=1

by exp(Φxy/2) = nx for x = 1, . . . , X (4.2a)

b2y + by

X∑
x=1

ax exp(Φxy/2) = my for y = 1, . . . , Y (4.2b)

where we defined ax =
√
µx0 and by =

√
µ0y. This is a system of (X + Y )

quadratic equations in the (X+Y ) unknowns (a, b). While we know from our

general analysis of separable matching that a solution exists and is unique3,

computing it is another matter. We describe here several solutions.

4.2.1 The IPFP Algorithm

Galichon and Salanié (2022) proposed the following algorithm:

1. choose some initial values b(0);

2. taking b = b(0), solve the X quadratic equations (4.2a) for a = a(1);

3. taking a = a(1) as given, solve the Y equations (4.2b) for b = b(1);

4. iterate steps 2 and 3.

They proved that it converges globally to the values (a∗, b∗) that gener-

ates the stable matching for the Choo and Siow (2006) model via µx0 =

(a∗x)
2 , µ0y =

(
b∗y
)2
, and µxy = a∗xb

∗
y exp(Φxy/2).

This is in fact an implementation of the Iterative Projections Fitting

Procedure (IPFP), which is also known as the Sinkhorn algorithm. The

3See also Decker, Lieb, McCann, and Stephens (2012) for the logit model.
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underlying idea of IPFP is that to project a point on the intersection of

several convex sets, one can project on the first set, then on the second, etc

until convergence. Here the convex sets are represented by the adding up

equations in the space of matching patterns. For the Choo and Siow (2006)

model, the projection is done according to the Kullback-Leibler divergence.

This can be generalized beyond the logit model, by projecting according

to the Bregman divergence associated from the generalized entropy E ; see

Galichon and Salanié (2022) for details4.

IPFP is especially easy to implement and very fast in the logit model, as

each quadratic equation has only one unknown and can be solved in closed

form. It is not hard to extend to the heteroskedastic logit and to the nested

logit5.

4.2.2 Alternatives to IPFP

For some specifications, each of the projection steps in IPFP may be costly.

In such cases, it can be simpler to minimize the following, convex function

of U :
X∑

x=1

nxGx(Ux·) +
Y∑

y=1

myHy(Φ·y −U·y). (4.3)

4In separable matching models, we derived the generalized entropy to account for the
contribution of matching on unobservables to the total joint surplus. The literature on
numerical techniques for optimal transport introduces the classical entropy as a regular-
ization device, and also makes extensive use of the Sinkhorn algorithm (see Peyré and
Cuturi, 2019).

5The Python package cupid matching implements IPFP for these and other variants
of the logit model—see Salanié (2023).
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At the optimum, we have for each (x, y):

nx
∂Gx

∂Uxy
(Ux·) = my

∂Hy

∂Vxy
(Φ·y −U·y).

These are simply the first-order conditions we obtained in (2.8), which define

the stable matching patterns6.

If it is easier to compute the generalized entropy function E than the

Emax functions Gx and Hy, then one can choose to maximize the social

welfare directly by using (2.11):

max
µ

 X∑
x=1

Y∑
y=1

µxyΦxy + E(µ;n,m)

 . (4.4)

Both optimization programs (4.3) and (4.4) are unconstrained, globally

convex, and generally well-behaved. Still, they have X × Y variables; this

may be a large number in some applications. Sometimes their dimension

can be reduced to (X + Y ). The Choo and Siow (2006) model is a case in

point. Consider the following function:

F (u,v) =
∑
x∈X

nx
(
ux + e−ux − 1

)
+
∑
y∈Y

my

(
vy + e−vy − 1

)
+ 2

∑
x∈X
y∈Y

√
nxmye

Φxy−ux−vy
2 .

The function F is globally convex. Galichon and Salanié (2022, section 4.2)

6If the specification allows for zero cells µxy = 0 at the optimum, then one needs to
replace Φ·y−U·y with Φ·y−U·y−d·y, where the dxy are slack variables that satisfy dxy ≥ 0
and µxydxy = 0.
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prove that it is minimized for the equilibrium values of the type-average

utilities u = (ux) and v = (vy). The equilibrium matching patterns are

then obtained from

µx0 = nx exp(−ux)

µ0y = my exp(−vy)

µxy =
√
nxmy exp ((Φxy − ux − vy)/2) .



Concluding Remarks

The array of methods available in this field has expanded at a rapid pace in

the past ten years.

A dominant theme of our survey is that matching (or trade, in hedonic

models) is partly driven by characteristics of the partners that are not ob-

served by the econometrician. The separability assumption that underlies

much empirical work only allows for matching on such unobservables in a

restricted form. We do not yet have broadly applicable methods to deal

with markets where the joint surplus from a match, or a trade, involves

complementarities between unobservables.

The theoretical literature on matching is well ahead of the applied litera-

ture. Theorists have modeled matching on networks, complex supply chains,

and two-sided platforms among other things (see Hatfield, Jagadeesan, Komin-

ers, Nichifor, Ostrovsky, Teytelboym, and Westkamp (2023) for a recent sur-

vey). As these features often play a crucial role in industrial organization

and international trade, we are looking forward to see much more empirical

work based on matching these areas.

This trend is already apparent in international trade. Since Eaton and

145
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Kortum (2002), a substantial literature in international trade7 has embedded

discrete choice methods into general equilibrium models. In this approach,

the productivities of the various immobile factors determine the probability

that a given factor is used in the production of a given good in a given

country. The factor productivity shocks are assumed to be independent

draws from a Fréchet distribution, which is the multiplicative analog of the

logit model of Section 2.2.2. This results in a structure that is formally

similar to (while more complex than) that of the Choo and Siow model.

This chapter assumed away two sources of frictions: asymmetric informa-

tion and search frictions. We refer the reader to the survey by Liu (2025).

Search frictions are, of course, at the center of the search-and-matching

framework that dominates structural applied work in labor economics. The

seminal contribution of Shimer and Smith (2000) emphasized endogenous

sorting by heterogeneous agents under matching with transferable utility.

Eeckhout (2018) surveys more recent work along these lines.

Finally, we showed in Section 4.1 that hedonic and matching models

relate to flows on networks. There is a very large mathematically oriented

literature; we believe that some of its tools could be used very fruitfully in

economics.

7See Costinot and Vogel (2015) for a recent survey.
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