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Abstract

Many econometric models used in applied work integrate over unobserved

heterogeneity. We show that a class of these models that includes many ran-

dom coefficients demand systems can be approximated by a “small-σ” expan-

sion that yields a linear two-stage least squares estimator. While our estimator

is only approximately correct, it is extremely fast and easy to implement. It

is also detail-free: its implementation does not rely on the higher moments

of the distribution of the random coefficients. We test our approach on the

models of product shares and prices popular in empirical IO, with or without

micromoments and with or without specifiying supply. Monte Carlo simula-

tions suggest that our approximate estimator performs surprisingly well: its

asymptotic bias is usually small, and it works well in finite samples. A simple
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Newton-Raphson correction further improves the estimates at minimal cost.

Moreover, our method yields simple and useful exclusion tests.
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Introduction

Many econometric models are estimated from conditional moment conditions that

express the mean independence of random unobservable terms η and instruments Z:

E pη|Zq “ 0.

In structural models, the unobservable term is usually obtained by solving a set of

equations—often a set of first-order conditions—that define the observed endogenous

variables as functions of the observed exogenous variables and unobservables. That

is, we start from

GpY, η, θ0q “ 0 (1)

where Y is the vector of all observed random variables and θ0 is the true value of the

vector of unknown parameters. The parametric function G is assumed to be known

and can depend on a vector of observed exogenous variables. If the solution exists

and is unique, we invert this system into

η “ F pY, θ0q

and we seek an estimator of θ0 by minimizing an empirical analog of a norm

‖E pF pY, θqmpZqq‖

where mpZq is a vector of measurable functions of Z. We will assume throughout

that the moment conditions point identify θ.

Unless F pY, θq exists in closed form, inversion often is a step fraught with diffi-

culties. Even when a simple algorithm exists, inversion is still costly and must be

done with a high degree of numerical precision, as errors may jeopardize the “outer”

minimization problem. One alternative is to minimize an empirical analog of the

norm

‖E pη mpZqq‖

subject to the structural constraints (1). This “MPEC approach” has met with

some success in dynamic programming and empirical industrial organization (Su and

Judd 2012, Dubé et al 2012). It still requires solving a nonlinearly constrained,

nonlinear objective function minimization problem; convergence to a solution can be
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a challenging task in the absence of very good initial values. This is especially galling

when the model has be estimated many times, as with Nash-in-Nash models1.

We propose an alternative method that derives a linear approximating model from

a very simple series expansion. To fix ideas, suppose that θ can be decomposed into a

pair pβ, σq, where σ is a scalar whose true value is likely to be small. We rewrite (1)

as

GpY, F pY, β0, σ0q, β0, σ0q “ 0.

Expanding σ Ñ F pY, β0, σq in a Taylor series at σ “ 0 suggests a family of “approxi-

mate estimators” that minimize the empirical analogs of the norms:

›

›

›
E

ˆˆ

F pY, β, 0q ` . . .`
BqF

Bσq
pY, β, 0q

σq

q!

˙

mpZq

˙

›

›

›
(2)

If the true value σ0 is not too large, one may hope to obtain a satisfactory estimator

for a small value of q. In general, this still requires solving a nonlinear minimization

problem when q ą 0. For q “ 1, the first-order conditions of the problem are the

usual normal equations. However, as we will see pBF
Bσ
qpY, β, 0q “ 0 in many interesting

cases, so that we must go at least to the q “ 2 expansion to identify σ.

The resulting estimators of β0 and Σ0 are only approximately correct, in the

sense that they consistently estimate an approximation of the original model. On the

other hand, they can be estimated very simply and fast by two-stage least-squares.

As this is a linear problem, the optimal2 instruments associated with the second-

order conditional moment restrictions can be estimated directly from the data using

nonparametric regressions3. Moreover, since our approximate estimators only rely on

limited features of the data generating process, they are “detail-free” in ways that we

will explore later.

As we will show, under weak conditions the Berry, Levinsohn, and Pakes (1995)

model (hereafter “macro-BLP”) that is the workhorse of empirical IO belongs to the

QLRC family. So do count models with unobserved heterogeneity, which are often

used in insurance applications for instance4 Moreover, our method may remain useful

1See for example, Crawford and Yurukoglu (2012) and Ho and Lee (2017).
2In the sense of Amemiya (1975).
3Alternatively, we can include flexible functions of the columns of Z in the instruments used to

compute the 2SLS estimates.
4See Section 1.1 and Appendix C.2.
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beyond this class of quasi-linear models, at the cost of requiring (simple) numerical

optimization5. Another attractive feature of FRAC in this context is that it can be

easily applied to environments with large numbers of products and markets. Brand

(2021a) has used the FRAC estimator to allow the distribution of the price sensitivity

of retail consumers to vary at the three-digit ZIP code level; this would likely be

computationally infeasible with the standard GMM approach6.

To test our method, we run two Monte-Carlo simulations on a macro-BLP model.

In Section 6, we show that the asymptotic bias inherent in our method is usually

small—and certainly much smaller than the sampling variation in many applications.

Section 7 turns to a finite sample simulation modeled after Dubé et al (2012) in which

the simulated prices (and market shares) are equilibrium outcomes rather than drawn

from a linear reduced form relationship between observed product characteristics and

instruments and the unobserved product characteristic. We find that in regard to the

mean values of the random coefficients, our estimation procedure performs as well as

their recommended MPEC estimator across all parameter configurations considered.

For a number of parameter configurations, our bias-corrected estimator in fact pro-

duces superior estimates of variance of the random coefficients relative to the MPEC

estimator. We also demonstrate the usefulness of our procedure in specification tests.

FRAC-based tests of the exclusion of a product characteristic appear to work re-

markably well. For the parameter configurations that we consider, the finite-sample

size of these tests is well-approximated by the asymptotic size; and they are powerful

enough to detect economically meaningful deviations from the null hypothesis with a

high probability. Tests that the coefficient of a product characteristic is non-random

work less well but can still be useful.

Our approach builds on “small-σ” approximations to the mapping F . Kadane

(1971) pioneered the “small-σ” method. He applied it to a linear, normal simultaneous

equation system and studied the properties of k-class estimators7 when the number

of observations n is fixed and σ goes to zero. He showed that when the number

of observations is large, under these “small-σ asymptotics” the k-class estimators

have biases in σ2, and that their mean-squared errors differ by terms of order σ4.

5We will illustrate this on a mixed nested logit in Appendix C.1.
6Brand also posted online a Julia implementation of FRAC (Brand 2021b).
7Which include OLS and 2SLS.
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Kadane argued that small σ, fixed n asymptotics are often a good approximation to

finite-sample distributions when the estimation sample is large enough.

The small-σ approach was used by Chesher (1991) in models with measurement

error. Most directly related to us, Chesher and Santos-Silva (2002) used a second-

order approximation argument to reduce a mixed multinomial logit model to a “het-

erogeneity adjusted” unmixed multinomial logit model in which mean utilities have

additional terms8. They suggested estimating the unmixed logit and using a score

statistic based on these additional covariates to test for the null of no random vari-

ation in preferences. Like them, we introduce additional covariates. Unlike them,

we develop a method to estimate jointly the mean preference coefficients and pa-

rameters characterizing their random variation; and we only use linear instrumental

variables estimators. To some degree, our method is also related to that of Harding

and Hausman 2007, who use a Laplace approximation of the integral over the random

coefficients in a mixed logit model without choice-specific random effects.

An alternative approach developed by Lu, Shi and Tao (2021) applies semi-

nonparametric techniques to the macro-BLP model in order to estimate the depen-

dence of market shares on the covariates whose coefficients are random. Our estimator

can be seen as a second-order truncation of theirs. Lu et al’s estimator, unlike ours,

is consistent as the number of products goes to infinity. Like ours, it does not require

specifying the distribution of random coefficients.

Section 1 introduces the class of random coefficient models to which our method

applies. Section 2 presents the model popularized by Berry-Levinsohn-Pakes (1995)

and discusses some of the difficulties that practitioners have encountered when tak-

ing it to data. We give a detailed description of our algorithm in Section 3. Readers

not interested in the derivation of our formulæ can jump directly to our Monte Carlo

simulations in Sections 6 and 79. Section 4 of the paper derives and discusses the prop-

erties of our method; Section 5 proposes a simple Newton-Raphson iteration-corrected

estimator. The proofs of some of our results are in Appendix A. Other appendices

give a more focused discussion of the mixed binary choice model (Appendix B); an

8Ketz (2018) builds on a quadratic expansion in σ0 “ 0 to derive asymptotic distributions when

the true σ0 is on the boundary.
9More detailed simulation results are available online as an interactive StreamlitTM app at https:

//share.streamlit.io/bsalanie/FRAC_simulations/main/main_page.py
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extension to a nested logit macro-BLP model (Appendix C.1); an application to a

count data model with unobserved heterogeneity (Appendix C.2); and more detailed

information on our Monte Carlo simulations (Appendix D).

1 Quasi-linear Random Coefficients Models

Our method applies to random coefficient models that have a specific quasi-linear

structure. Their defining characteristic is that the error term η and the mean coeffi-

cients β only enter the reduced form of (1) via a linear combination η ` f1pY qβ:

GpY ,η,β,Σq ” G˚
pY , EεA

˚
pY ,η ` f1pY qβ, εqq . (3)

The unobserved random vector ε is distributed independently of Y and η. It is

location-normalized by Eεε “ 0 and it has a finite covariance matrix Σ10. Let the

dimension of G equal J , the number of equations in the reduced form. We assume

that the dimensions of A˚ and η also equal J .

In this specification, the functions f1, G
˚ and A˚ are assumed to be known; our

goal is to get approximate estimates of θ0 “ pβ0,Σ0q. We assume that instruments

Z are available and that the unknown parameters θ0 are identified by the conditional

moment conditions E0 pη|Zq “ 0.

1.1 Count Data

Our leading example in this paper will be the “macro-BLP” model of modern em-

pirical industrial organization; Section 2 will describe it and show that it is indeed a

QLRC model. Here we discuss another interesting QLRC instance—count data with

unobserved heterogeneity.

A popular data-generating process for count data is the Poisson model: for a

subpopulation with observed characteristics X and unobserved η. we define λ “

η ` Xβ, as the expected value of K, the number of events in this subpopulation,

which also follows a Poisson distribution with Ppλq:

PrpK “ k|Xq “ pkpλpXqq,

10Later we discuss how to incorporate linear restrictions on its elements.
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where pkpλq ”
λk expp´λq

k!
.

This model has the well-known problem with applying it to individual count data

that EpKq “ V arpKq. A common solution is to add unobserved heterogeneity at the

individual level, e.g.

λpXi, εiq “ exp pXiβ ` εiq

so that

PrpK “ k|Xq “ Eεpk pε exp pXβqq .

A popular choice has ε follow a log-Gamma distribution, independently of X, in

which case the count variable K has a negative binomial distribution. Let us go

beyond this functional form and distributional assumption and only impose following

moment restrictions on the distribution of ε:

PrpK “ k|Xq “ Eεqkpηk `Xkβ, εq (4)

where the qk are known non-negative functions, the ηk are unknown fixed effects,

and the unobserved random vector ε has an unknown distribution with mean 0 and

unknown covariance matrix Σ. Suppose we have consistent estimators ŷkpXq of the

left-hand side of (4) for J values tk1, . . . , kJu, and assume that Epηk|Zq “ 0 for

each of these values. This describes a QLRC model with Y “ pŷk1pXq, . . . , ŷkJ pXqq;

f1pY q “X; A˚j pa, b, cq “ qkjpb, cq; and G˚
j pa, bq “ aj ´ bj.

1.2 Approximating QLRC Models

The quasi-linear structure of (3) yields straightforward expansions in this class of

models. Remember that we define F as the inverse of G in the η dimension. Some

restrictions on G˚ and A˚ are required to apply our methods. We call this class of

models regular QLRC models.

Definition 1 (Regular QLRC Models). A QLRC model is regular if and only if:

1. All moments of order 4 or less of ε are finite

2. G˚ is twice differentiable with respect to its second argument

3. A˚ is twice differentiable with respect to its last two arguments
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4. the pJ ˆ Jq matrices

G˚
2pY ,η,βq ”

„

BG˚j
BA˚k

pY ,A˚pY ,η ` f1pY qβ,0qq



j,k“1,...,J

and

A˚2pY ,η,βq ”

„

BA˚j
Bηk

pY ,η ` f1pY qβ,0q



j,k“1,...,J

are invertible for all pY ,η,βq.

As we will see in Section 2, macro-BLP models satisfy parts 2, 3, and 4 of Def-

inition 1; so does the count data model with heterogeneity of Section 1.1 if the qk

functions are twice differentiable and invertible in their first argument. Note that

part 1 of Definition 1 encompasses any distribution of random coefficients β̃ “ β` ε

whose first four moments are finite11.

We now state our main theorem.

Theorem 1 (Expansions for regular quasi-linear random coefficients models). Any

regular QLRC model admits an inverse whose second-order expansion is

F pY ,β,Σq » f0pY q ´ f1pY qβ ´ f2pY qΣ (5)

where

• the J variables f0pY q are uniquely defined by the system of equations

G˚
pY ,A˚pY ,f0pY q,0qq “ 0 (6)

• and the linear operator f2pY q is defined by

pf2pY qΣqj “
1

2
D2pY qTr

ˆ

B2A˚j
BεBε1

pY ,f0pY q,0q Σ

˙

(7)

for j “ 1, . . . , J12, where

D2pY q “ pA
˚
2pY ,f0pY q,0qq

´1 .

11Heteroskedasticity of ε can easily be accommodated via the first argument of the function A˚.
12Trp¨q is the trace matrix operator.
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Equivalently,

f2pY qΣ “

M
ÿ

m“1

M
ÿ

n“m

Kmn
pY qΣmn

where for each 1 ď m ď n ď M , the vector KmnpY q P RJ solves the linear

system

A˚2pY ,f0pY q,0qK
mn
pY q “

1` 11pn ą mq

2

B2A˚

BεmBεn
pY ,f0pY q,0q. (8)

where 11pn ą mq “ 1 if n ą m and zero otherwise. We will call these vectors

the artificial regressors.

Proof. A full proof is given in Appendix A.1. We describe its main elements here.

Since Σ is a positive definite matrix, it admits a unique Cholesky decomposition

Σ “ LL1. Choose any non-zero coefficient Lij and define σ “ |Lij|. This allows us

to define B “ L{σ and Σ “ σ2BB1. Similarly, we denote v “ L´1ε: it is a random

vector with mean zero and a unit covariance matrix, and ε “ σBv. We will expand

η as a function of σ and B, then recast our results in terms of Σ.

By definition, GpY ,F pY ,β,Σq,β,Σq ” 0 and since the model is regular, there

exists a unique function g such that

gpY q “ EvA
˚
pY ,F pY ,β,Σq ` f1pY qβ, σεq.

With our new notation, we define F by FpY ,β, σ,Bq “ F pY ,β, σ2BB1q, so that

gpY q “ EvA
˚
pY ,FpY ,β, σ,Bq ` f1pY qβ, σBvq.

We first prove that the function F is well-defined and that it satisfies three very useful

properties:

C1: the first derivative F3pY ,β, 0,Bq ” 0

C2: FpY ,β, 0,Bq is independent of B and affine in β.

C3: the second derivative F33pY ,β, 0,Bq does not depend on β.
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For σ “ 0, part 3 of Definition 1 gives us a unique f0 such that gpY q “ A˚pY ,f0pY q,0q,

which is (6). It translates into FpY ,β, 0,Bq “ f0pY q´f1pY qβ, which implies prop-

erty C2. With some linear algebra, we obtain C1, C3, and (7) from the identity

A˚pY ,f0pY q,0q “ gpY q

“ EvA
˚
pY ,FpY ,β, σ,Bq ` f1pY qβ, σBvq.

Note that we did not use any distributional assumption on the random coeffi-

cients, beyond possessing finite moments. Moreover, the method is detail-free in its

implementation: the same formulæ can be applied to any QLRC model. The val-

ues taken by the terms in the expansions of course do depend on f1,A
˚ and G˚.

We give an illustration for a one-covariate mixed binary choice model without any

distributional assumption in Appendix B.1.

1.3 Estimating QLRC Models

The expansion (5) suggests minimizing the sample analogue of

›

›

›
E

˜

f0pY q ´ f1pY qβ ´
M
ÿ

m“1

M
ÿ

n“m

Kmn
pY qΣmn

¸

mpZq
›

›

›
.

Taking the parameters of interest to be pβ,Σq, this is simply a two-stage least squares

regression of f0pY q on f1pY q and KpY q with instruments mpZq. The artificial re-

gressors KpY q can be computed directly from the data, using (8); and their estimated

coefficients will be our approximate estimator of Σ. More precisely, suppose we ob-

serve data Yi for i “ 1, . . . , N generated by a regular QLRC model. Our estimation

algorithm is as follows:

Algorithm 1. Fast, Detail-free, and Approximately Correct (FRAC)13 Es-

timation of Regular Quasi-linear Random Coefficient Models

13In a previous version of the paper, we called our method “robust”, hence the R in “FRAC”.

“Detail-free” is a more accurate characterization; we decided to keep the FRAC acronym, which is

more euphonic than FDFAC.
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1. For every observation i “ 1, . . . , N , take f1pYiq from the definition of the model

in (3) and

• invert (6) to compute f0pYiq

• use (8) to compute the artificial regressors KpYiq.

2. Run a two-stage least squares regression of f0pY q on f1pY q and KpY q, taking

as instruments a flexible set of functions of the columns of Z.

3. Define β̂N to be the estimated coefficients associated with f1 and Σ̂N the esti-

mated coefficients associated with K.

Because we only used a second-order expansion, our estimators may not converge

in probability to the true θ0 as N goes to infinity; they have a probability limit

θ2 “ plimpθ̂N q.

and they are asymptotically normal around θ2. Consistent estimates of the covari-

ance matrix of the asymptotic distribution of
?
Npθ̂N ´ θ2q can be obtained from

the expressions for the heteroskedasticity consistent covariance matrix for the 2SLS

estimator given in White (1982).

In random coefficient models the matrix Σ is often taken to be diagonal; and

some of its diagonal elements may be fixed at zero. Our algorithm easily adapts to

these and other linear constraints of the form Σ “ CS for functional independent

parameters S: we only need to redefine the artificial regressors as the product of K

and C. Imposing that the matrix Σ be positive definite would bring in nonlinear

constraints and/or minimization14; we have not attempted to do so.

The rest of this paper can be seen as an application of Algorithm 1 to the macro-

BLP model of empirical industrial organization. For completeness, we describe its

implementation to the count data model with heterogeneity of Section 1.1 in Ap-

pendix C.2.

14The simplest way might be to parameterize Σ via its Choleski decomposition: Σ “ LL1.
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2 The macro-BLP model

Much work in empirical IO is based on market share and price data. It has followed

Berry et al (1995—hereafter BLP) in specifying a mixed multinomial logit model

with product-level random effects. To deal with the endogeneity of prices implied by

these product-level random effects, BLP use a Generalized Method Moments (GMM)

estimator that relies on the mean independence of the product-level random effects

and a set of instruments.

To fix ideas, we define “the standard model” as follows. Let J products be available

on each of T markets. Each market contains an infinity of consumers who choose one

of J products. Consumer i in market t derives a conditional indirect utility from

consuming product j equal to

X 1
jtβ̃i ` ξjt ` uijt.

There is also a good 0, the “outside good”, whose utility for consumer i is typically

normalized to equal ui0t. The random variables β̃ represent individual variation in

tastes for observed product characteristics, while the vector u contains the product

and individual-specific unobserved preference heterogeneity observed by the individ-

ual, but not by the econometrician. The vectors β̃ and u are independent of each

other, and of the covariates X and product random effects ξ.

The simplest such specification assumes that the elements of the vector uit “

pui0t, ui1t, . . . , uiJtq are independently and identically distributed (iid) as standard

type-I Extreme Value (EV) variables; the product effects ξjt are unknown mean zero

random variables conditional on a set of instruments; and the random variation in

preferences β̃i has a distribution which is known up to its mean β̄0 and its covariance

matrix V0. This distribution is often modeled as independent, identically distributed

Npβ̄0,V0q random vectors with a diagonal covariance V0; we won’t need such a dis-

tributional assumption.

Like the original BLP paper, we allow for a more general structure for the random

coefficients:

β̃i “ Π0Di ` εi

where
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• Π0 are unknown coefficients of a random vector Di whose distribution is known

and typically depends on the market t;

• εi has a mean zero distribution with an unknown, finite covariance matrix V0;

• εi and Di are distributed independently of each other.

In the literature, theD variables are often called “micromoments” or “demographics”.

Berry et al (1995) used one such variable to represent the distribution of income within

each market. Nevo (2001) added age and number of children.

We break down Di into its mean for market t and its within-market variation:

Di “ D̄t ` D̃i. This allows us to rewrite

X 1
jtβ̃i “ X̄

1
jtΠ̄`X 1

jtΠD̃i `X
1
jtεi

where X̄jt ” Xjt b D̄t has nonrandom coefficients, b is the Kronecker product

operator, and Π̄ ” vecpΠq. We will use the notation νi for the term ΠD̃i ` εi. so

that X 1
jtβ̃i “ X̄ 1

jtΠ̄ ` X 1
jtνi. Denote Ωt the (known) variance of Di on market t.

Then the covariance matrix of ν for this market is

Σt ” V pνiq “ ΠΩtΠ
1
` V .

Models without micromoments are the special case when Di is the constant 1.

Then D̄t ” 1 and D̃i ” 0, so that X̄jt ” Xjt and νi ” εi, with covariance matrix

Σt ” V .

Some of the covariates in Xjt may be correlated with the product-specific random

effects. The usual example is a model of imperfect price competition where the prices

firms set in market t depend on the value of the vector of unobservable product

characteristics, ξt, some of which the firms observe.

The parameters to be estimated are the mean coefficients Π0 and the covariance

matrix of the random coefficients V0. We collect them in θ0 “ pΠ0,V0q. The data

available consists of the market shares ps1t, . . . , sJtq and prices pp1t, . . . , pJtq
1 of the J

varieties of the good, of the covariates Xt, and of additional instruments Zt, all for

market t. Note that the market shares do not include information on the proportion

S0t of consumers who choose to buy good 0. Typically the analyst computes the

outside good share from other sources. Let us assume that this is done, so that we

14



can deal with the augmented vector of market shares pS0t, S1t, . . . , SJtq, with Sjt “

p1´ S0tqsjt for j P J “ t1, . . . , Ju.

The market shares for market t are obtained by integration over the variation in

preferences, which comes from both D̃ and ε: for good j P J ,

Sjt “ ED̃,ε

»

–

exp
´

X̄ 1
jtΠ̄`X 1

jtΠD̃ `X 1
jtε` ξjt

¯

1` ΣJ
k“1 exp

´

X̄ 1
ktΠ̄`X 1

ktΠD̃ `X 1
ktε` ξkt

¯

fi

fl (9)

and S0t “ 1´
řJ
j“1 Sjt.

Berry et al. (1995) assume that

E pξjt|Zjtq “ 0

for all j P J and t. The instruments Zjt may for instance be the characteristics

of competing products, or cost-side variables. The procedure is operationalized by

showing that for given values of θ, the system (9) defines an invertible mapping15 in

IRJ . Call ΞpSt,θq its inverse; a GMM estimator obtains by choosing functions Z˚jt of

the instruments and minimizing a well-chosen quadratic norm of the sample analogue

of:

E
`

ΞpSt,θqZ
˚
jt

˘

over θ.

These models have proved very popular; but their implementation has faced a

number of issues. Some recent literature has focused on the sensitivity of the estimates

to the instruments used in GMM estimation of the mixed multinomial logit model.

Reynaert–Verboven (2014) showed that using linear combinations of the instruments

can lead to unreliable estimates of the parameters of interest. They recommend using

the optimal instruments given by the Amemiya (1975) formula:

Z˚jt “ E

ˆ

BΞ

Bθ
pSt,θ0q|Zjt

˙

.

As implementing the Amemiya formula relies on a consistent first-step estimate of θ0,

this is still problematic. Gandhi and Houde (2020) propose “differentiation IVs” to

approximate the optimal instruments for the parameters V of the distribution of the

15See Berry (1994).
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random preferences ε. They also suggest a simple regression to detect weak instru-

ments. An alternative is to use the Continuously Updating Estimator to build up the

optimal instruments as minimization progresses. Armstrong (2016) points out that

instruments based on the characteristics of competing products achieve identification

through correlation with markups. But when the number of products is large, many

models of the cost-side of the market yield markups that just do not have enough

variation, relative to sampling error. This can give inconsistent or just uninformative

estimates16.

Computation has also been a serious issue. The original BLP approach used a

“nested fixed point” (NFP) approach: every time the objective function to be mini-

mized was evaluated for the current parameter values, a contraction mapping/fixed-

point algorithm must be employed to compute the implied product effects ξt from the

observed market shares St and for the current value of θ. This was both very costly

in terms of computational time and prone to numerical errors that propagate from

the nested fixed point algorithm to the minimization algorithm. Dubé et al (2012)

proposed a nonlinearly-constrained, nonlinear optimization problem to estimate θ.

Their simulations suggest that this “MPEC” approach often outperforms the NFP

method in terms of computational time, sometimes by a large factor. Lee and Seo

(2015) proposed an “approximate BLP” method that inverts a linearized approxima-

tion of the mapping from ξt to St. They argue that this can be even faster than the

MPEC approach to estimation. Nevertheless, solving a nonlinear optimization prob-

lem for a potentially large set of parameters is time-consuming. It typically requires

starting values in the neighborhood of the optimal solution; closed-form gradients;

and careful monitoring of the optimization algorithm by the analyst, as the objective

function is not globally concave.

Conlon and Gortmaker (2020) cover all of these issues in great detail; and their

Python module pyblp incorporates what they found to be the best practices (some of

which they contributed.) Their conclusion is measured: “it is possible to obtain good

performance even in small samples and without exogeneous cost-shifters, particularly

when “optimal instruments” are employed along with supply-side restrictions.” It is

16Instruments that affect marginal cost directly (if available) do not require variation in the markup

to shift prices, and therefore do not suffer from these issues. Variation in the number of products

per market may also be used to restore identification, data permitting.
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quite easy to incorporate such supply-side restrictions in our approach; we show it in

Section 3.3.3.

The method we propose in this paper completely circumvents the need to solve a

nonlinear optimization problem. It also avoids the computational burden of generat-

ing a large set of random draws from a multidimensional distribution. Our estimator

relies on an approximate model that is exactly valid when there is no random vari-

ation in preferences, and becomes a coarser approximation as the amplitude of the

random variation in elements of β̃i grows. As such, our estimator is not a consistent

estimator of the parameters of the BLP model. On the other hand, it has some very

real advantages that may tip the scale in its favor. First, it requires a single linear

2SLS regression that can be computed in microseconds with off-the-shelf software17.

Second, our estimator needs to assume very little about the form of the distribu-

tion of the random variation in preferences ν (beyond its small scale), justifying the

“detail-free” in our title.

Some readers may find the “approximate correctness” of our estimator unsatisfy-

ing. It at least yields “nearly consistent” starting values for the classical nested-fixed

point and MPEC nonlinear optimization procedures at a minimal cost. This addresses

a major challenge associated with successfully implementing the MPEC estimation

procedure–the choice of starting values. It also provides useful diagnoses about how

well different parameters can be identified with a particular model and dataset; and

a simple way to select between models containing different covariates and random

coefficients, as we explain below.

3 2SLS Estimation in the Standard BLP Model

For the reader primarily interested in applying our method to empirical industrial

organization, this section provides a step-by-step guide to implementing the estimator

in the standard macro-BLP model. For simplicity, we concentrate on the most basic

17Fox et al. (2011) discretize the distribution of the random coefficients on a grid and estimate the

corresponding probability masses. This also results in a least-squares estimator; theirs is constrained

by linear inequalities and may be sensitive to the choice of the grid points. Nevo, Turner and Williams

(2016) report a positive experience with a very large grid.
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model.

3.1 Expansions and the Artificial Regressors

Let us first establish that the macro-BLP model belongs to the class of QLRC models

we introduced in Section 1. To see this, consider a single market and define Y “

pS,Xq; f1pY q “ X̄; and η “ ξ.

Now let G˚
j pY ,aq “ Sj ´ aj and

A˚j “ Pr

ˆ

j “ arg max
J“0,1,...,J

`

X̄ 1
kΠ̄`X 1

kν ` ξk ` uk
˘

|X, ξ,ν

˙

so that, denoting bj “ X̄
1
jΠ̄` ξj, we can rewrite

A˚j pX, b,νq ”
exp

`

bj `X
1
jν
˘

1`
řJ
k“1 exp pbk `X 1

kνq
. (10)

This recasts the macro-BLP model as a QLRC model, which is obviously regular.

Applying Theorem 1 shows that f0pyq has a very simple expression:

f0pY q “ log
S

S0

where S0 is the market share of good 0. This simply reflects the well-known fact that

when the coefficients are not random, the model can be estimated by regressing the

log-odds ratios of market shares on the covariates. To compute the artificial regressors,

we use (8). We do this in Appendix A.2. To state our results, we introduce some

useful notation:

Definition 2 (Market share weighting). For any J-dimensional vector T of J com-

ponents, we define the scalar

eST “
J
ÿ

k“1

SkTk.

By extension, if m is a pJ ˆ Jq matrix with J columns pm1, . . . ,mJq, we define the

vector

eSm “

J
ÿ

k“1

Skmk.
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It is important to note that the operator eS has weights pS1, . . . , SJq that sum to

p1´ S0q.

Given these definitions, we summarize our results in the following theorem:

Theorem 2 (Artificial Regressors for Macro-BLP without micromoments). In the

macro-BLP model without micromoments (Di ” 1), the artificial regressors are given

by

Kmm
j “ XjmpXjm{2´ eSXmq (11)

for the diagonal terms of Σ, and

Kmn
j “ XjlXjn ´XjmeSXn ´XjneSXm (12)

for the off-diagonal terms with n ą m.

If the matrix Σ is restricted by Σmn “
řP
p“1C

p
mnαp for some constant matrix C,

then the artificial regressors associated with the parameter αp are

M
ÿ

m“1

M
ÿ

n“m

Cp
mnK

mn
j .

Models with micromoments require a bit more care, because of the quadratic term

ΠΩtΠ
1 in the variance of ν. As a consequence, the second-order expansion has an

additional term:

FjpYt,Π,V q » log
Sjt
S0t

´ X̄jtΠ̄´

M
ÿ

l“1

M
ÿ

n“l

K ln
jt V

ln
´

M
ÿ

l“1

M
ÿ

n“l

K ln
jt pΠΩtΠ

1
qln . (13)

Moreover, this term is a quadratic form of the same parameters that appear as coef-

ficients of X̄jt. We explain how to deal with this in Section 3.3.2.

3.2 Intuition

To understand the formula for the artificial regressors, first consider the model without

micromoments (D ” 1). For simplicity and like much of the literature, assume that

the covariance matrix Σ “ V is diagonal. Formula (11) shows that when Σ is

relatively small, so that our approximate model is a reasonable one, its elements are
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identified from a simple quadratic form of the corresponding observed characteristics,

weighted by the market shares. One attraction of this approximation is that the

artificial regressors can be easily computed and their variations examined, before

resorting to any estimation. The presence of quadratic terms is not surprising, because

the model multiplies X by ε. The very simple form of the artificial regressors is less

intuitive. To understand it better, we turn to the J “ 1 subcase—that is, a mixed

logit model.

When J “ 1, we have eST “ S1T1 for any variable T . The artificial regressors on

market t are simply
ˆ

1

2
´ S1t

˙

X2
1tl

for each covariate l that has a random coefficient. The focal role of the one-half

market share is a consequence of the symmetric shape of the logistic distribution.

With J “ 1, the model is

S1t “ EεL
`

XpΠ̄` εq
˘

,

where Lptq “ 1{p1` expp´tqq is the cdf of the logistic. Our second order expansions

bring in the second derivative of L, which is

L2ptq “ Lptqp1´ Lptqqp1´ 2Lptqq.

As L has an inflection point at t “ 0, where it equals 1{2, it is locally flat and a

first-order certainty equivalence prevails: if the argument of L does not vary much

around L´1p1{2q “ 0, then the model is second-order equivalent to a model with

non-random coefficients. As a consequence, it is very hard to identify the variance of

ε when J “ 1 and the market share stays close to 1{2. Away from this region, the

variance in the characteristics of the product and in its market share identifies the

variance of the random coefficients.

With more products (J ą 1), the term eSX introduces variations in the charac-

teristics of other products into the artificial regressors. This gives more identifying

power to the approximate estimator.
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3.3 Estimating the Approximate macro-BLP Model

For notational simplicity, we assume that we use all J ˆ T conditional moment re-

strictions:

E pξjt|Zjtq “ 0.

Adapting our procedure to subsets of moment restrictions is straightforward.

3.3.1 Without Micromoments

Our procedure runs as follows for the model without micromoments:

Algorithm 2. FRAC estimation of the standard BLP model

1. For every market t, augment the market shares from ps1t, . . . , sJtq to pS0t, S1t, . . . , SJtq

2. For every product-market pair pj P J , tq :

(a) compute the market-share weighted covariate vector et “
řJ
k“1 SktXkt;

(b) for every pm,nq for which Σmn is not set at zero, compute the “artificial

regressor” Kjt
mn as

• if n “ m: Kjt
mm “

´

Xjtm

2
´ etm

¯

Xjtm;

• if n ą m: Kjt
mn “ XjtmXjtn ´ etmXjtn ´ etnXjtm.

(c) for every j “ 1, . . . , J , define yjt “ logpSjt{S0tq

3. Run a two-stage least squares regression of y on X̄ and K, taking as instru-

ments a flexible set of functions of the columns of Z. Define Π̂ to be the

estimated coefficients associated with X and (the nonzero part of) Σ̂ to be the

estimated coefficients associated with K.

4. (optional18) Run a three-stage least squares (3SLS) regression across the T mar-

kets stacking the J equations for each product with a weighting matrix equal to

the inverse of the sample variance of the residuals from step 3.

18This step should only be considered when T is large relative to J .
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Consistent estimates of the covariance matrix of the asymptotic distribution of
?
TJpθ̂ ´ plimpθ̂qq can be obtained from the expressions for the heteroskedasticity

consistent covariance matrix for the 2SLS estimator given in White (1982).

Ideally, the “flexible set of functions of the columns of Z” in step 3 should be

able to span the space of the instruments EpX|Zq and EpK|Zq that are optimal

for our approximate model. Alternatively, these instruments can be estimated by a

nonparametric regressions of each column of X on the columns of Z.

As is well-known, misspecification of one equation of the model can lead to incon-

sistency in 3SLS parameter estimates of all equations of the model. It is therefore

not clear that Step 4 is worth the additional effort.

It is important to reiterate here that e is not a simple weighted average, as the

weights do not sum to one, but only to p1 ´ S0tq. To illustrate, if Xjtm ” 1 is

the constant, then etm is p1 ´ S0tq and the artificial regressor that identifies the

corresponding variance parameter is

Kjt
mm “ S0t ´

1

2
.

More generally, if Xjtn “ 11pj P J0q is a dummy that reflects whether variety j belongs

to group J0 Ă J , then it is easy to see that the corresponding variance parameter is

the coefficient of the artificial regressor

Kjt
nn “ 11pj P J0q

ˆ

1

2
´ SJ0t

˙

where SJ0t is the market share of group J0 on market t.

3.3.2 Adding Micromoments

In the presence of micromoments, we propose two complementary approaches that

only require two-stage least-squares estimation:

• if the variance Ωt of the micromoments does not vary much across markets,

Algorithm 2 gives estimates of Π and Σ; and the variance of ε can be recovered

as V “ Σ´ΠΩΠ1, where Ω is an average of the Ωt.

• this can be refined by a simple iterative procedure if the differences in the

variances cannot be neglected. Start with the approach in the previous bullet
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point to get estimates Πp0q,V p0q. At each iterative step, given estimates Πpsq,

subtract the term
M
ÿ

l,n“1

K ln
jt

´

ΠpsqΩt

`

Πpsq
˘1
¯

from log yjt and apply step 3 of Algorithm 2 to obtain new estimates Πps`1q,V ps`1q.

Stop when the estimates stabilize.

3.3.3 Adding the Supply Side

Modeling supply jointly with demand has two advantages in the macro-BLP model: it

adds identfying information and it allows the computation of counterfactuals market

equilbria. Our estimation approach easily accommodates a supply side.

To see this, suppose that a firm f produces a set of varieties Vf at constant

marginal cost cfkt on market t for each k P Vf . It chooses prices ppktqkPVf to maximize
ÿ

kPVf

ppkt ´ c
f
ktqSkt

where the market share of f depends on its prices, on competitor’s prices, and on the

characteristics of consumers’ demand. In Nash equilibrium, all firms sell at the same

prices on a given market.

The first-order conditions of this problem are

pjt `
ÿ

kPVf

ppkt ´ c
f
ktq
BSkt
Bpjt

“ 0 for each j P Vf .

We can rewrite them as

cfjt “ pjtp1` µjtq

where the markup µjt can be evaluated once the market share functions are known.

Suppose for simplicity that on each market t, there are J firms, each of which

produces only one variety: Vj “ tju for j “ 1, . . . , J . Then Lerner’s formula gives

1

µjt
“ ´

B logSjt
B log pjt

.

Because marginal costs must be positive, we specify

log cjjt “Wjtγ ` ωjt
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where ωjt is orthogonal to some functions mSpZjtq of the instruments. This gives a

set of moment conditions

Erplog pjt ` logp1` µjtq ´WjtγqmSpZjtqs “ 0. (14)

The markups νjt are complicated nonlinear functions of the parameters Π and Σt of

the demand system. However, they are easy to evaluate once these parameters are

estimated from the demand system. Replacing µ with the estimated µ̂ in (14) gives

an estimating equation that is linear in the parameters γ and can again be estimated

by two-stage least-squares.

This recursive approach provides us with approximate estimates of both consumer

preferences and cost functions, using only two-stage least-squares estimation. Joint

estimation would allow us to improve the estimates of demand parameters by using

the fit of the supply equations; unfortunately, it cannot be done without breaking the

appealing linearity of our recursive approach.

4 Pros and Cons of the 2SLS Estimation Approach

Our method has two obvious drawbacks. The first one is minor: because the elements

of the covariance matrix Σ are estimated as the coefficients of the corresponding

artificial regressors K, the resulting matrix Σ̂ may not be semi-definite positive.

As explained earlier, this could be remedied by introducing the quadratic constraint

Σ “ LL1 for a lower-triangular matrix L.

The second drawback is more substantial: because this is only an approximate

model, the resulting estimator θ̂ will not converge to θ0 as the number of markets T

goes to infinity. We discuss this in much more detail in Section 4.1. For now, let us

note that this drawback is tempered by several considerations. First, the number of

markets available in empirical IO is typically small; finite-sample performance of the

estimator is what matters, and we will examine that in Section 7. More importantly,

our estimator has several useful features. Let us list six of them:

1. Because the estimator employs linear 2SLS, computing it is extremely fast and

can be done in microseconds with any of-the-shelf linear regression software.
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2. We do not have to assume any distributional form for the random variation in

preferences ε. This is a notable advantage over other methods, which can yield

inconsistent estimates if the distribution of ε is misspecified.

3. Computing the optimal instruments does not require any first-step estimate

because the estimating equation is linear. We can just use a flexible set of

functions of the columns of Z that span the space of the optimal instruments

EpX|Zq and EpK|Zq.

4. Even if the econometrician decides to go for a different estimation method,

our proposed 2SLS estimates obtained should provide a set of very good initial

parameter values for a nonlinear optimization algorithm.

5. The confidence regions on the estimates will give useful diagnoses about the

strength of identification of the parameters, both mean coefficients Π and their

random variation Σ. This would be very hard to obtain otherwise, except by

trying different specifications.

6. There has been much interest in systematic specification searches in recent

years; see e.g. Horowitz-Nesheim 2019 for a Lasso-based selection approach in

discrete choice models. With our method any number of variants can be tried

in seconds, and model selection is drastically simplified.

4.1 The Quality of the Approximation

Ideally, we would be able to bound the approximation error in the expansion of ξj,

and use this bound to majorize the error in our estimator in the manner described in

Kristensen and Salanié (2017). While we have not gone that far, we can justify the

local-to-zero validity of the expansion in the usual way. We are taking a mapping

S “ H pξ,X, σq

that is differentiable in both ξ and σ; inverting it to ξ “ Ξ pS,X, σq; and taking

an expansion to the right of σ “ 0 for fixed market shares S and covariates X. The

validity of the expansion for small σ and fixed pX,Sq depends on the invertibility of

the Jacobian Hξ.
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First consider the standard model. It follows from Berry 1994 that Gξ is invertible

if no observed market share hits zero or one. Applying the Implicit Function Theorem

repeatedly shows that in fact the Taylor series of ξ converges over some interval r0, σ̄s

if all moments of ε are finite; and that the expansion is valid at order L if the moments

of ε are bounded to order pL` 1q.

Characterizing this range of validity is trickier. Figure 1 uses formulæ derived

in Appendix B to plot the first four coefficients of the expansion in Σ11X
2
1 for the

standard Gaussian binary model (that is, the Gaussian mixed logit) with one covariate

X1:

ξ1 “ log
S1

S0

´ βX1 ´

4
ÿ

l“1

tlpS1qΣ
l
11X

2l
1 `Opσ

10
q.

Each curve plots the function tl as market shares vary between zero and one. The

visual impression is clear: the ranges of variations decrease quickly with l. Beyond

the first term, which corresponds to our 2SLS method, the coefficients are always

smaller than 0.05 in absolute value. Of course, the approximation error also depends

on the values taken by the covariates X1. For instance, t1pS1qX
2
1 is what we called

earlier K11.

0.2 0.4 0.6 0.8 1.0
S1

-0.4

-0.2
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Figure 1: Coefficients t1,2,3,4pS1q

While this simple example can only be illustrative, we find the figure encouraging
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as to the practical range of validity of the approximation. To go further, in Section 6

we simulate a simple multinomial logit model and we explore the properties of the

estimated parameters and elasticities as the number of markets becomes very large.

This allows us to quantify the asymptotic bias of our approximate estimators, anong

other things.

4.2 Invariance to Higher-order Moments

Our expansions only rely on the properties of the derivatives of the logistic cdf Lptq “
1

1`expp´tq
and on the first two moments of ε. This has a distinct advantage over

competing methods: the lower-order moments of ε can be estimated by 2SLS, and

nothing more needs to be known about its distribution.

Suppose for instance that the analyst does not want to assume that ε has a

symmetric distribution. Then the artificial regressors are unchanged. In the absence

of symmetry, the approximate model may or may not be be a worse approximation;

in any case, running Algorithm 2 should still provide useful estimators of the elements

of Σ0.

We follow with a modification of our multinomial logit random coefficients mod-

eling framework to account for the third and fourth moments of ε. We then turn to

methods for improving the quality of our 2SLS estimates19. Finally, Appendix C.1

presents a nonlinear 2SLS estimation procedure for the random coefficient nested logit

model.

4.3 Higher-order terms

In Appendix B, we study in more detail the standard binary choice model. For this

simpler case, calculations are easily done by hand for lower orders of approximation,

or using symbolic software for higher orders.

Consider the standard model and assume (as is often done in practice) that there

are no micromoments and the εm are independent across the covariatesm “ 1, . . . , nX .

We denote σ2
m “ Σmm “ Epε2mq, and sm “ Eε3m. The calculations in Appendix A.3

19We explore the small sample properties of several of these corrections in a Monte Carlo study

in Section 7.
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show that the third-order expansion is

ξj “ log
Sj
S0

´ X̄jΠ̄´

M
ÿ

m“1

Kj
mmσ

2
m ´

M
ÿ

m“1

T jmsm

where the Kmm
j are as in Theorem 2 and we introduce new artificial regressors

T jm ” Xjm

ˆ

X2
jm

6
´
XjmeSXm

2
` peSXmq

2
´
eSpX

2
mq

2

˙

.

Algorithm 2 therefore can be adapted in the obvious way to take possible skewness of

ε into account. Note that the procedure remains linear in the parameters pΠ,Σ, sq,

for which it generates approximate estimates by 2SLS.

The fourth order term has a more complicated structure—see Appendix A.3.

5 Correcting the 2SLS estimates

If the analyst is willing to make more distributional assumptions, she can resort to

bootstrap or a Newton-Raphson corrections to improve the accuracy of our 2SLS

estimators.

5.1 Bootstrapping

Once we have approximate estimators Π̂ and Σ̂, we can use them to solve the market

shares equations for estimates of the product effects ξ and bootstrap them, provided

that we are willing to impose a distribution for ε (beyond the normalization of its

first two moments.)

Denote ζ “ Σ´1{2ν the standardized random term. We use Berry inversion to

solve for ξ̂t in the system

Sjt “ Eζ
exp

´

X̄jt
ˆ̄Π`XjtΣ̂

1{2ζ ` ξ̂jt

¯

1` ΣJ
k“1 exp

´

X̄kt
ˆ̄Π`XktΣ̂1{2ζ ` ξ̂kt

¯ ,

where Eζ denotes the expectation with respect to the assumed distribution of ζ. For
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any resample ξ˚ of the ξ̂, we simulate the market shares from

S˚jt “ Eζ
exp

´

X̄jt
ˆ̄Π`XjtΣ̂

1{2ζ ` ξ˚jt

¯

1` ΣJ
k“1 exp

´

X̄kt
ˆ̄Π`XktΣ̂1{2ζ ` ξ˚kt

¯

and we use our 2SLS method to get new estimates Π˚,Σ˚. Finally, we compute

bias-corrected estimates by e.g.

ΠC
“ 2Π̂´

1

B

B
ÿ

b“1

Π˚
b.

More generally, the resampled estimates can be used to estimate the distribution of

Π̂ and Σ̂ in the usual manner.

5.2 A Two-Step Estimator Based on a Newton-Raphson Cor-

rection

Another way to correct the estimator is to use a Newton-Raphson step to correct for

the effects of the approximation. As it turns out, this can be done quite simply if one

is willing to impose more structure than the second-order expansion.

For simplicity, we focus on the model without micromoments; we denote X “

pX̄,Kq the covariates and the artificial regressors, and Êp¨q the operator that averages

over the sample.

Let θ “ pΠ,Σq, and θ0 its true value. Our 2SLS estimator θ̂2 is based on the

approximate model Epξ2pθqZq “ 0, where

ξ2,jtpθq “ log
Sjt
S0t

´X jtθ. (15)

Alternatively, we could have estimated the model using inversion or MPEC, with

an “exact” ξ8. Let λ0 denote additional parameters of the model (such as higher-

order moments of the distribution of ε) that are identified using the exact ξ8 but

not20 with our approximate ξ2. We denote ξ8pθ,λ0q as the value of the vector of

unobserved product-specific effects that rationalize the observed market shares for

parameters θ and λ0.

20If the only free parameters of the distribution of ε are the elements of Σ, then λ will be empty.
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Consider only one pj, tq observation and drop the subscripts, so that ξ is a scalar

and Z is a row vector. We can write

Ê
´

ξ8pθ̂2,λ0qZ
¯

“ Ê
´´

ξ8pθ̂2,λ0q ´ ξ8pθ0,λ0q

¯

Z
¯

` Ê pξ8pθ0,λ0qZq .

Because by assumption E pξ8pθ0,λ0q|Zq “ 0, the term on the last line converges to

zero as the number of markets becomes large. We approximate the first term with

its first-order Taylor expansion

Ê

ˆ

Bξ8
Bθ
pθ̂2,λ0qpθ̂2 ´ θ0q Z

˙

.

If our ξ2 approximation is reasonably good, we can replace the derivatives of ξ8 with

respect to θ with those of ξ2. But those derivatives are simply ´X , because by

definition ξ2pθq “ y ´Xθ. This gives us

Ê
´

ξ8pθ̂2,λ0qZ
1
¯

» Ê pZ 1X q pθ0 ´ θ̂2q;

that is

Ê pZ 1X qθ0 » Ê pZ 1X q θ̂2 ` Ê
´

ξ8pθ̂2,λ0qZ
1
¯

But Ê pZ 1X q θ̂2 “ Ê
´

Z 1py ´ ξ2pθ̂2q
¯

, so that we finally get

Ê pZ 1X qθ0 » Ê
´

Z 1py ` ξ8pθ̂2,λ0q ´ ξ2pθ̂2q
¯

.

This is simply the estimating equation for a two-stage least-squares regression: we

will be recovering a corrected estimate of θ0 by regressing the corrected left-hand side

variables y˚ “ y ` ξ8pθ̂2,λ0q ´ ξ2pθ̂2q on the same covariates X we used to obtain

θ̂2, with the same instruments Z.

To evaluate ξ8pθ̂2,λ0q, we need to choose a distributional form for ε and its

parameters λ0. Then we use Berry inversion to solve for the values ξ8 that ratio-

nalize the observed market shares S at the estimated parameter values θ̂2. Then

(reintroducing the market and product indices) we define

y˚jt “ yjt ` ξ8,jtpθ̂2,λ0q ´ ξ2,jtpθ̂2q
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and we apply our 2SLS procedure with this new dependent variable21. Our Monte

Carlo study in Section 7 will explore the small sample properties of this two-step

procedure.

Note that just as the correction is computed at the initial two-stage least-squares

estimators θ̂2, it could be computed again at the new, corrected estimates.

Instead of ξ8, we could use some ξp with p ą 2. This would be more “detail-free”

as it would only require an assumption on moments of order 3 to p. Denoting θ̂p the

estimator of the approximate model of order p, we would get the equation

Ê pZ 1X q θ̂p » Ê
´

Z 1py ` ξppθ̂2,λ0q ´ ξ2pθ̂2q
¯

` ÊpZ 1ξppθ̂p,λ0qq.

If the last term can be neglected, this suggests using 2SLS with the correction

y˚jt “ yjt ` ξp,jtpθ̂2,λ0q ´ ξ2,jtpθ̂2q

to obtain a corrected estimator with properties close to those of θ̂p.

6 Asymptotic Performance of Our Estimators

As the sample size (the number of markets in the macro-BLP application) grows, our

approximate estimator converges to a pseudo-true value. A natural way to evaluate

the corresponding asymptotic bias is to run a Monte Carlo simulation with a large

sample size. Because our algorithm is very fast, this can be done at little cost.

The only covariates in this simulation are 1 and the logarithm of the price xjt “

log pjt. The coefficient of x is random: it depends on a micromoment di “ d̄t ` d̃i

which is normally distributed,

d̃i » Np0, τ 2q and d̄t » Np0, 1q,

and on a random shock εi » Np0, σ2
0q. In our previous notation,

X̄Π̄ “ β0 ` β1xjt ` π0xjtd̄t

Xν “ xjtpπ0d̃i ` εiq.

21In the special case in which we use as many instruments as there are columns in X , Êpξ2pθ̂2qZq “

0 and we can simply use the correction y˚ “ y ` ξ8pθ̂2,λ0q.
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Because the variance of d̄i is the same on each market, the random term νi is dis-

tributed as Np0, s20q, where s20 “ σ2
0 ` π2

0τ
2. This allows us to use the first approach

described in Section 3.3.2: we will estimate π2
0 and s20 and recover an estimate of σ2

0

by subtraction (remember that the distribution of di is observed, so that τ obtains

directly from the data.)

The product effects ξ and the values of the instrument zjt are iid draws from a

Np0, 1q distribution. The covariates x are generated as follows:

xjt “ ρxzzjt `
a

1´ ρ2xzpρxξξjt `
b

1´ ρ2xξζjtq.

where the values of ζjt are iid draws from a Np0, 1q distribution, independent of zjt

and ξjt.

This formulation implies that the R2 of a regression of xjt on zjt (resp. on ξjt) is

ρ2xz (resp. p1´ ρ2xzqρ
2
xξ). Therefore ρ2xz measures the strength of the instruments, and

ρ2xξ is a proxy for the degree to which the price is endogeneous.

We ran a variety of simulations with T “ 5, 000 markets (close enough to infinity

that the results do not change), with different parameter values and numbers of

products from J “ 1 (the mixed logit) to J “ 100. We took the value of the standard

error of the micromoment to di to be τ “ 0.5 and the strength of the instruments to

be ρ2xz “ 0.5; and we imposed β1 “ 1 for the coefficient of x.

We tried all combinations of the following:

• a scenario in which we set β0 so that the market share S0 of the zero good

fluctuates around 0.5, and one in which it fluctuates around 0.9

• a model without a micromoment (π0 “ 0) and several models with a micromo-

ment (π0 “ 0.25, 0.5, 1.0)

• a model in which price is exogenous (ρxξ “ 0, in which case we use x as an

instrument) and one in which it is endogeneous (ρ2xξ “ 0.5, with instruments

z).

Since ours is a small-σ approximation, we used a number of values for the variance of

ε: from σ2
0 “ 0 to σ2

0 “ 2. Since xjt has unit variance and β1 “ 1, the R2 of a regression

of mean utilities on their covariates xjt and xjtd̄t would be p1`π2
0q{p1`π

2
0p1`τ

2q`σ2
0q.
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This expression decreases with σ2
0; it decreases with π0 iff σ2

0 ď 1` τ 2. The R2 varies

widely across our simulation scenarii, from a minimum of 0.33 (for σ0 “ 2 and π0 “ 0)

to close to 1 (for σ0 “ 0 and π0 “ 0).

6.1 Asymptotic Bias

In these very large samples, θ̂2 is a very good approximation of the pseudo-true value

θ2. Therefore the asymptotic bias of our 2SLS estimator must be close to pθ̂2 ´ θ0q.

We measured it in all of our simulations, along with the asymptotic bias from the

two-step “corrected” estimator we described in Section 5.2. In addition, we computed

the semiparametric efficiency bound for the exact BLP model; that is, the asymptotic

variance of the most efficient estimator22 given the moment conditions Epξ8|Zq “ 0.

Figure 2 plots our results for a very simple model: S0 close to 0.9, price is ex-

ogenous, there is no micromoment, and only J “ 5 products. The three subpanels

of Figure 2a plot the pseudo-true values for the three elements of θ2 (in red) and of

the corrected estimator (in green), along with the true values of θ0 (in black). For

comparison, the dashed lines plot the bounds of the 95% confidence interval for the

efficient BLP estimator when the number of markets is T “ 100.

As expected, the asymptotic bias of our estimators increases with the true value

of σ. Still, even for σ0 “ 2, our 2SLS estimator of β0 and β1 stays well inside the 95%

confidence bounds for T “ 100; the Newton-Raphson iteration-corrected estimator

does even better.

The 2SLS estimators of the variance σ2 are biased downwards for the larger values

of σ2
0. This is not surprising as our approximation neglects the higher-order moments,

which matter more as σ0 grows. The Newton–Raphson correction cuts the bias by

about half; it keeps the asymptotic bias within the 95% confidence intervals for 100

markets over the whole range of values of σ2
0.

Because own-price and cross-price elasticities are a major parameters of interest in

empirical industrial organization, Figure 2b plots the mean and the dispersion across

22This is simply the standard BLP estimator with the optimal instruments and the efficient weight-

ing matrix.
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Figure 2: Exogeneous price, no micromoment, 5 products

(a) Pseudo-true values

(b) Semi-elasticities
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Figure 3: Endogeneous price, with a micromoment, 100 products

(a) π0 “ 0.25

(b) π0 “ 1.0
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markets of the estimated semi-elasticities

B logSjt
Bxkt

pθ̂2q.

We show both the own-price semi-elasticity (j “ k “ 1) and the cross-price semi-

elasticity (j “ 1, k “ 2)23. Both semi-elasticities are computed using the approximate

model, and at the pseudo-true values. The black line shows the elasticities at the true

parameter values, for the exact BLP model. Our estimates seem to be very reliable

as long as σ2
0 does not become too large. Once again, the correction does a very good

job of reducing the (small) bias for the cross-price semi-elasticity.

Going to the other end of the spectrum, we now add a micromoment; we make

the price endogeneous; and we consider markets with J “ 100 products. Figure 3

now has two rows, for the smallest and largest values of π0; and four subpanels on the

left side as we estimate π0 and s20 “ σ2
0 ` π2

0τ
2. There are obvious changes: because

there are many more products, the estimates on β0 and β1 are very close to the true

values, and the cross-price semi-elasticities are smaller. Beyond that, the patterns in

this figure are remarkably similar to those in Figure 2. This is constant across the

many simulation runs that we did24.

7 Monte Carlo Analysis of the Small-Sample Per-

formance of our Estimators

This section presents the results of a Monte Carlo study that explores the small-

sample properties of our estimator when applied to a realistic empirical IO dataset.

We compare the finite sample performance of our estimator to the one computed

using the mathematical programming with equilibrium constraints (MPEC) approach

recommended by Dubé, Fox and Su (2012). We adopt their basic set-up, except that

we require our market shares and product prices to be result of a price-setting Nash

equilibrium conditional on the realizations of the unobservables on the demand side

23Because the model is symmetric across products, this choice of product indices is without loss

of generality
24They are all available online as an interactive StreamlitTM app at https://share.streamlit.

io/bsalanie/FRAC_simulations/main/main_page.py/asymptotic_performance.
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(the unobserved product characteristics and the random preference parameters) and

the supply side (the unobserved components of marginal cost).

7.1 The Data-generating Process

7.1.1 The Demand Side

We study a standard static aggregate discrete choice random coefficients demand

system with T “ 50 markets and J “ 25 products in each market, and three observed

product characteristics in addition to the price. Each product is characterized by the

vector pX 1
jt, ξjt, pjtq

1, where Xjt is a 3 ˆ 1 vector of exogenous observable attributes

of product j “ 1, 2, . . . , J in market t, and pjt is the price of product j in market t,

which is endogenous. We assume that the ξjt are drawn independently from a Np0, σ2
ξ q

distribution. We define the following market-specific variables: Xt “ pX
1
1t, . . . ,X

1
Jtq

1,

ξt “ pξ1t, ξ2t, . . . , ξJtq
1, and pt “ pp1t, p2t, . . . , pJtq

1.

The conditional indirect utility of consumer i in market t from purchasing product

j is

β0 `X
1
jtβ

x
i ´ β

p
i pjt ` ξjt ` uijt

where the uijt are independently and identically distributed Type I extreme value

random variables. The utility of the j “ 0 good, the “outside” good, is equal to

ui0t. The vector βi “ pβ
x
i1, β

x
i2, β

x
i3, β

p
i q
1 is assumed to be drawn from a 4-dimensional

normal distribution with mean pβ̄x1 , β̄
x
2 , β̄

x
3 , β̄

pq and a diagonal covariance matrix with

diagonal elements pσ2
1, σ

2
2, σ

2
3, σ

2
pq.

We collect all of the demand parameters into the vector

θD “ pβ0, β̄
x
1 , β̄

x
2 , β̄

x
3 , β̄p, σ

2
1, σ

2
2, σ

2
3, σ

2
pq
1.

Consistent with the experimental design in Dubé, Fox and Su (2012), we generate

the values of Xt, ξt as follows. We draw Xt for all markets t “ 1, 2, . . . , T and all

products j “ 1, 2, . . . , T independently from a 3-variate normal distribution with zero

mean and covariance matrix
¨

˚

˝

1 ´0.8 0.3

´0.8 1 0.3

0.3 0.3 1

˛

‹

‚
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To compute the market shares for the J products, we start from the probability that

consumer i with random preferences βi purchases good j in market t:

sijtpXt,pt, ξt|βiq “
exppβ0 `X 1

jtβ
x
i ´ β

p
i pjt ` ξjtq

1`
řJ
k“1 exppβ0 `X 1

ktβ
x
i ´ β

p
i pkt ` ξktq

.

We compute the observed market shares for all goods in market t by drawing ns “

1, 000 draws pζsktq from four independent Np0, 1q random variables and constructing

1, 000 draws from βi given θ as follows:

βxskt “ β̄xk ` σkζikt for k “ 1, 2, 3, p.

We then use these draws to compute the observed market share of good j in market

t for any vector of prices for market t, pt, as:

SjtpXt,pt, ξt|θq “
1

ns

ns
ÿ

i“1

sijtpXt,pt, ξt|βstq

given the vectors Xt, pt, and ξt for each market t.

7.1.2 The Supply Side

Instead of a reduced form price equation that induces correlation between pjt and ξjt

as in Dubé, Fox, and Su (2012), we specify a cost side of the market and solve the

first-order conditions for profit-maximization to compute the market clearing prices.

Let the marginal cost of good j in market t equal:

mcjt “ exppγ0 ` z
1
jtγ ` ωjtq

where as in Dubé, Fox and Su (2012), we generate the values of a vector of three

instruments Zjt independently across markets and products from another 3-variate

normal distribution with mean p0, 0, 0q1 and covariance matrix

¨

˚

˝

1 0.5 ´0.3

0.5 1 0.3

´0.3 0.3 1

˛

‹

‚

.

We model price equilibrium as in Section 3.3.3, assuming for simplicity that each

product j is produced by a specialized firm j. Solving the J first-order conditions
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for the J prices for market t yields the equilibrium vector of prices pet in this market,

and the corresponding market shares SjtpXt,p
e
t , ξt | θq. For a specified value of the

parameter vector θ. Following this process for T “ 50 markets yields the dataset for

one Monte Carlo sample.

7.1.3 Parameter Configurations

All of our simulations have mean demand coefficients

β̄ “ pβ0, β̄
x
1 , β̄

x
2 , β̄

x
3 , β̄pq “ p7, 1.5, 1.5, 0.5, 4q;

γ0 “ 0.5; and ωjt „ Np0, 0.2q.

We run 12 scenarios obtained by setting

• two values for the variance of the unobserved product characteristics, σ2
ξ “

Varpξq “ 0.5, 1

• three values for the vector of variances of the random coefficients

σ2
“ pσ2

1, σ
2
2, σ

2
3, σ

2
pq “ p0.2, 0.2, 0.2, 0.1q, p0.5, 0.5, 0.5, 0.25q, p1.0, 1.0, 1.0, 0.5q

• and two sets of values for the parameters product-specific marginal cost func-

tions: γ “ p0.1,´0.1,´0.1q1 and γ “ p0.2,´0.2,´0.2q1.

In all of our simulation runs, we use the same 36 functions of the observed product

characteristics xjt and cost shifters zjt to generate moment conditions. They are

1, xkjt, x
2
kjt, x

3
kjt, pk “ 1, 2, 3q,

x1jtx2jt, x1jtxj3t, x2jtx3jt, x1jtx2jtx3jt, zkjt, z
2
kjt, z

3
kjt, pk “ 1, 2, 3q

z1jtz2jt, z1jtz3jt, z2jtz3jt, z1jtz2jtz3jt, zkjtx1jt, zkjtx2jt, zkjtz3jt, pk “ 1, 2, 3q

Let W denote this pJˆT qˆ36 matrix of instruments. In our case JˆT “ 1, 250 be-

cause J “ 25 and T “ 50. For both MPEC and FRAC, we estimate the 9 parameters

in

θD “ pβ0, β̄
x
1 , β̄

x
2 , β̄

x
3 , β̄p, σ

2
1, σ

2
2, σ

2
3, σ

2
pq

. For FRAC, we also estimate the 5 parameters of the supply side θS “ pγ0, γ1, γ2, γ3, σ
2
ωq.
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To each of our simulation scenarii corresponds a breakdown of the variance of the

endogeneous variables (market shares and prices). To apprehend it, we report simple

variance decompositions. For prices, we use a linear regression to isolate the part of

the variation that is explained by the instruments:

V pjt “ V E ppjt|Wjtq ` EV ppjt|Wjtq

and we further break down the part that is not explained into the part that is ex-

plained by the demand-side and supply-side product effects ξjt and ωjt and the un-

explained part.

We use a similar method to decompose the variance in market shares into the part

that is explained by the covariates xjt and the instrumented price Eppjt|Wjtq; the

part that is explained by the randomness in the coefficients βi; and the part that is

explained by the product effect ξjt.

We give more information on the computation of these statistics in Appendix D,

where we also show the variance decompositions for demand and supply in the various

scenarii we explored.

7.2 FRAC Estimation

To estimate the demand parameters θD by FRAC, we construct the 4 artificial re-

gressors Kk
jt for k “ 1, 2, 3, p in each market and for each product, and we run the

two-stage least squares regression of the J ˆ T observations logpSjt{S0tq on the nine

regressors

p1, x1jt, x2jt, x3jt, pjt, K
1
jt, K

2
jt, K

3
jt, K

p
jtq

with the 36 instruments in Wt.

To estimate the supply side coefficients θS, we then proceed as described in Sec-

tion 3.3.3: using our estimator of θD, we obtain ξ as the solution of the market

shares equations; we define the JˆJ diagonal matrix ∆ whose pj, jq element is equal

to ´pBSjq{pBpjq for these estimates of θD and ξ. Then we rewrite the J first-order

conditions as

lnppjt ´ bjtppt,xt, ξt | θqq “ γ0 ` z
1
jtγ ` ωjt,

where b “ ∆´1S. Finally, we use an OLS regression of the J ˆ T (generated)
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observations lnppjt ´ bjtppt,xt, ξ̂t | θ̂Dqq on the vector zjt to obtain an estimator of

θS “ pγ0,γ
1, σ2

ωq
1.

The supply equation for product j and market t can be combined with demand

equation for product j and market t to construct a 3SLS estimator of θD and θS that

accounts for potential contemporaneous correlation between ξjt and ωjt.

7.3 MPEC Estimation

While FRAC estimation only requires 2SLS and OLS, implementing MPEC involves

solving a nonlinear optimization problem subject to nonlinear equilibrium constraints

based on simulated market shares. As shown in Dubé, Fox and Su (2012), the MPEC

approach consists in minimizing

η1W pW 1W q
´1W 1η

with respect to θ and η, subject to the “equilibrium constraints”

spη,θq “ S

where S is the vector of observed market shares and s represents the simulated market

shares

sjtpη,θq “
1

Ns

Ns
ÿ

s“1

exppβs0 ` β
x
s1x1j ` β

x
s2x2j ` β

x
s3x3j ´ β

p
spjt ` ηjtq

1`
řJ
k“1 exppβs0 ` βxs1x1k ` β

x
s2x2k ` β

x
s3x3k ´ β

p
spkt ` ηktq

and the pβsq vectors are random draws from the following normal distribution:

N

¨

˚

˚

˚

˚

˚

˚

˝

¨

˚

˚

˚

˚

˚

˚

˝

θ1

θ2

θ3

θ4

θ5

˛

‹

‹

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˚

˚

˝

0 0 0 0 0

0 θ6 0 0 0

0 0 θ7 0 0

0 0 0 θ8 0

0 0 0 0 θ9

˛

‹

‹

‹

‹

‹

‹

‚

˛

‹

‹

‹

‹

‹

‹

‚

.

Note that β0s (like β0) is not allowed to be random. For purposes of estimation, we

set Ns “ 1, 000.

For each Monte Carlo simulation, we start the optimization with true values for θ,

and a vector of zeros for the η vector. Clearly, these starting values are not feasible

for empirical researchers; we use them to maximize the chances that the MPEC

estimation will converge to a solution.
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7.4 Using FRAC for Variable and Random Coefficient Selec-

tion

The researcher often has many potential product characteristics to consider when

estimating a demand system. Our estimation procedure can be used both to select

variables and to decide which should have random coefficients. To do this, we change

our simulation to consider tests of three hypotheses: whether β̄x1 “ 0; whether σ2
1 “ 0;

and the joint test of β̄x1 “ 0 and σ2
1 “ 0. To compute the power functions for

these tests, we follow the procedure described above for generating equilibrium prices

and market shares given product characteristics and cost shifters, with the same

distributions.

We also consider a test that the coefficient of price is non-random: σ2
p “ 0. For all

of these tests we compute the empirical frequency of rejection of each null hypothesis

when it is true, and for economically plausible deviations from the null hypothesis.

For true parameter values, we chose: γ “ p0.1,´0.1,´0.1q1,

β̄ “ p7, β̄x1 , 1.5, 0.5, 4q

σ2
“ pσ2

1, 0.5, 0.5, 0.25q

and σ2
ξ “ 0.5 and σ2

ω “ 0.2. Table 1 contains the true values for β̄x1 and σ2
1 “ 0.

β̄x1 σ2
1

0 0

0.25 0

0.75 0

1.5 0

0 0.1

0 0.2

0 0.5

Table 1: Tests on βxi1

The true values for σ2
p are 0, 0.05, 0.10, 0.25. We keep the same values as above

with β̄x1 “ 1.5 and σ2
1 “ 0.5.
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We perform these tests using our estimator with White (1982) model misspec-

ification robust standard error estimates applied to both our 2SLS estimates and

bias-corrected estimates.

7.5 Simulation Results

7.5.1 Estimates

On each plot, the dashed vertical purple line represents the true value of the pa-

rameter. We show four estimators: MPEC, “FRAC(D)” and “FRAC(S)” for 2SLS

applied to the demand model then to the supply model, and 3SLS for the three-stage

least squares estimator. In all of our simulations, we found that the three-stage least

squares estimate is almost identical to the 2SLS estimate, both for demand and supply

parameters. Our full simulation results are available at https://share.streamlit.

io/bsalanie/FRAC_simulations/main/main_page.py/finite_sample_estimates.

When the randomness of the coefficients (as measured by the parameters σ2) is

small, our FRAC estimators perform as well as MPEC for the mean values of the ran-

dom coefficients, and actually better for the variances. Figure 4 give a representative

example, for σ2 “ p0.5, 0.5, 0.5, 0.25q, σ2
ξ “ 1.0, and γ “ p0.1,´0.1,´0.1q. In this sce-

nario, 15% of the variance of prices is explained at by the unobserved product effects,

and 80% by the covariates and instruments. 45% of the variance of market shares

is explained by the covariates and instruments and 40% by the random variation in

consumer preferences.

The only scenarii in which MPEC outperforms FRAC are, not surprisingly, those

where the coefficients of demand have a large variance. Figure 5 is drawn for σ2 “

p1.0, 1.0.1.0, 0.5q, σ2
ξ “ 0.5, and γ “ p0.2,´0.2,´0.2q. In this scenario, 50% of the

variance of prices is explained at by the unobserved product effects, and 40% by the

covariates and instruments. 70% of the variance of market shares is explained by the

covariates and instruments and 20% by the random variation in consumer preferences.

The FRAC estimates of the coefficients of supply are very reliable across all sce-

narii. Figure 6 plots their distribution in the two scenarii considered above.
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Figure 4: Distribution of the Demand Estimates for Small Randomness

(a) Means of the Random Demand Coefficients

(b) Variances of the Random Demand Coefficients
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Figure 5: Distribution of the Demand Estimates for Large Randomness

(a) Means of the Random Demand Coefficients

(b) Variances of the Random Demand Coefficients
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Figure 6: FRAC Estimates of the Coefficients of Supply

(a) Small Randomness

(b) Large Randomness
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7.5.2 Tests

In large samples, a consistent test should have p-values distributed uniformly over

r0, 1s under the null, and moving towards a mass at 1 under the alternative. It

should have a power equal to its nominal size under the null, and close to 1 under

the alternative.

Figure 7 plots the empirical cdf of the p-values of our tests for β1 “ 0 using

FRAC in the small randomness scenario25. The dashed vertical and horizontal lines

correspond to p “ 0.05. The agreement with asymptotic theory under the null is

striking. Figure 8 plots a few points on the corresponding power curve. Clearly, the

test has power to detect fairly modest deviations from the null.

25The results are very similar when we use the corrected 2SLS estimates.
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Figure 7: p-values of test that β1 “ 0
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Figure 8: Power curve of the test that β1 “ 0

Figures 9 and 10 plot the empirical cdf of the p-values and the power curve of of

our test for σ1 “ 0. The test tends to overreject under the null; it still has decent

power against alternatives. Moving now to our test that the endogenous variable has

a non-random coefficient (σ2
p “ 0), Figures 11 and 12 show that the test underrejects

under the null; it is able to detect deviaitions especially if they are large enough.

Finally, Figures 13, 14, 15, and 16 show p-values and power curve of our joint

test that β1 “ σ2
1 “ 0. The first two figures consider alternatives of the form σ1 “

0, β1 ą 0. The joint test performs very well. Figures 15 and 16 consider alternatives

β1 “ 0, σ1 ą 0. In this case, the test has correct size but has limited power.

The general conclusion of this exercise is that the results of exclusion tests (that

β1 “ 0 in this case) based on FRAC are very reliable. While tests that a coefficient

is non-random (that σ2
1 “ 0 or σ2

p) perform less well, they can still play a useful role

in guiding the choice of specification.
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Figure 9: p-values of test that σ2
1 “ 0
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Figure 10: Power curve of test that σ2
1 “ 0

Figure 15: p-values of test that β1 “ σ2
1 “ 0 when β1 “ 0
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Figure 11: p-values of test that σ2
p “ 0

52



Figure 12: Power curve of test that σ2
p “ 0

Figure 16: Power curve of test that β1 “ σ2
1 “ 0 when β1 “ 0
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Figure 13: p-values of test that β1 “ σ2
1 “ 0 when σ1 “ 0
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Figure 14: Power curve of test that β1 “ σ2
1 “ 0 when σ1 “ 0

Concluding Comments

Our FRAC estimation procedure applies directly to the random coefficients demand

models commonly used in empirical industrial organization. For the most part, our

Monte Carlo results confirm the findings from the expansions. The 2SLS approach

yields reliable estimates of the parameters of the model and of economically mean-

ingful quantities such as price elasticities; and it does so at a very minimal cost. It

does not require any assumption on the higher-order moments of the distribution of

the random coefficients. In addition, it provides straightforward tests that help in

variable selection. A simple correction improves the estimates if one is willing to

specify the distribution of the coefficients further.
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A Proofs

A.1 Proof of Theorem 1

We drop Y from the notation since the expansion is for a fixed Y . Since G˚
2 is

invertible, there exists a vector g such that we only need to solve

g “ EvA
˚
pFpβ, σ,Bq ` f1β, σBvq. (16)

The following lemma enumerates three properties of the function F at σ “ 0.

Lemma 1 (Properties of the inverse F). Any regular QLRC model has a well-defined

inverse function F that satisfies the following:

C1: Fσpβ, 0,Bq ” 0

C2: Fpβ, 0,Bq is independent of B and affine in β.

C3: the second derivative FσσpY ,β, 0q does not depend on β.

Proof of Lemma 1. First note that at σ “ 0, (16) is simply g “ A˚pFpβ, 0,Bq `
f1β,0q. Since A˚2 is invertible, the equation g “ A˚pf0,0q has a unique solution f0;

and

Fpβ, 0,Bq “ f0 ´ f1β.

This proves C2. Moreover, by the Implicit Function Theorem, the function F is

defined for small σ and it is differentiable. Writing (16) at σ and subtracting (16) at

σ “ 0 gives an identity in pσ,Bq:

EvA
˚
pFpβ, σ,Bq ` f1β, σBvq ´A˚pf0,0q ” 0.

Taking the first derivative in σ gives

Ev rA
˚
2pFpβ, σ,Bq ` f1β, σBvqFσpβ, σ,Bq `A

˚
3pFpβ, σ,Bq ` f1β, σBvqBvs ” 0.

(17)

At σ “ 0, this is

A˚2pf0,0qFσpβ, 0,Bq `A
˚
3pf0,0qBEvv “ 0.
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Since Evv “ 0, the second term is zero. As A˚2 is invertible, Fσpβ, 0,Bq must be

zero. This proves C2.

The second derivative in σ of the identity (or the first derivative of (17)) consists

of five terms. At σ “ 0, three of them contain Fσpβ, 0,Bq, which is zero as we just

proved. The only potentially nonzero terms come from the second derivative of F :

A˚2pf0,0qFσσpβ, 0,Bq (18)

and from the second derivative of A˚ with respect to its last argument, which is more

complicated. The second term of (17) is a vector whose j-th component is

Ev

˜

J
ÿ

k“1

BA˚j
Bεk

pFpβ, σ,Bq ` f1β, σBvq
M
ÿ

m“1

Bkmvm

¸

.

Taking its derivative at σ “ 0 gives

Ev

˜

J
ÿ

k,l“1

B2A˚j
BεkBεl

pf0,0q
M
ÿ

m“1

Bkmvm

M
ÿ

n“1

Blnvn

¸

. (19)

We will simplify this term in the main proof. For now, it suffices to note that it does

not depend on β; combining equations (18) and (19) establishes C3.

To continue with the proof of Theorem 1, let us return to equation (19). Since

Evmvn “ 11pm “ nq, this is

J
ÿ

k,l“1

B2A˚j
BεkBεl

pf0,0q
M
ÿ

m“1

BkmBlm “

J
ÿ

k,l“1

B2A˚j
BεkBεl

pf0,0qpBB
1
qkl.

Since the result is a scalar (for given j) and σ2BB1 “ Σ, we can also rewrite this

term as its trace:

J
ÿ

k,l“1

B2A˚j
BεkBεl

pf0,0qΣkl{σ
2
“

1

σ2
Tr

ˆ

B2A˚j
BεBε1

pf0,0qΣ

˙

.

Putting things together gives, for j “ 1, . . . , J

pA˚2pf0,0qFσσpβ, 0,Bqqj `
1

σ2
Tr

ˆ

B2A˚j
BεBε1

pf0,0qΣ

˙

“ 0.
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The expansion in σ therefore is

Fpβ, σ,Bq » f0 `´f1β `
σ2

2
Fσσpβ, 0,Bq

» f0 ´ f1β ´ pA
˚
2pf0,0qq

´1 W

where W is the vector with components

Wj “
1

2
Tr

ˆ

B2A˚j
BεBε1

pf0,0qΣ

˙

“

M
ÿ

l,m“1

B2A˚j
BεlBεm

Σlm

“
1

2

M
ÿ

l“1

B2A˚j
Bε2l

Σll

`

M
ÿ

l“1

ÿ

mąl

B2A˚j
BεlBεm

Σlm.

This completes the proof.

A.2 Proof of Theorem 2

To compute the artificial regresssors Kmn
j , we first evaluate the derivatives of

A˚j “
exppajq

1`
řJ
k“1 exppakq

.

Standard calculations give

BA˚j
Bak

“ A˚j p11pj “ kq ´ A˚kq.

In the macro-BLP model, ak “ ηk ` X̄k `Xkν, so that

BA˚j
Bνm

“ A˚j

˜

Xjm ´

J
ÿ

k“1

A˚kXkm

¸

.

This yields

B2A˚j
BνmBνn

“ A˚j

˜

pXjm ´

J
ÿ

k“1

A˚kXkmqpXjn ´

J
ÿ

k“1

A˚kXknq ´

J
ÿ

k“1

A˚kXkmXkn `

J
ÿ

k,l“1

A˚kA
˚
lXkmXln

¸
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Remember from Theorem 1 that these expressions have to be evaluated at ν “ 0,

where A˚j is simply Sj. We obtain the simple formulæ:

BA˚j
Bη

“ diagpSq ´ SS1

and

B2A˚j
BνmBνn

“ Sj

˜

pXjm ´

J
ÿ

k“1

SkXkmqpXjn ´

J
ÿ

k“1

SkXknq ´

J
ÿ

k“1

SkXkmXkn `

J
ÿ

k,l“1

SkSlXkmXln

¸

.

Using Definition 2, we rewrite this as

B2A˚j
BνBν 1

“ Sj
`

XjX
1
j ´ peSXjqX

1
j ´XpeSXq

1
` 2peSXqpeSXq

1
´ eSpXX

1
˘

.

It follows from Theorem 1 that for each 1 ď m ď n ď M , the artificial regressors

Kmn solve the system

pdiagpSq ´ SS1qKmn
“

1` 11pn ą mq

2
S pXmXn ´ peSXmqXn ´XmpeSXnq

`2peSXmqpeSXnq ´ eSpXmXnqq .

Each of these can be rewritten as a system of J equations, after dividing by Sj on

both sides:

Kmn
j ´ eSK

mn
“

1` 11pn ą mq

2
pXjmXjn ´ peSXmqXjn ´XjmpeSXnq

`2peSXmqpeSXnq ´ eSpXmXnqq . (20)

Given their form, it seems natural to look for a solution of the form

Kmn
j “

1` 11pn ą mq

2
pXjmXjn ´ peSXmqXjn ´XjmpeSXnq ` dmnq .

Applying the eS operator gives

eSK
mn
“

1` 11pn ą mq

2
peSpXmXnq ´ 2peSXmqpeSXnq ` p1´ S0qdmnq .

Subtracting and substituting in (20), we obtain

S0
1` 11pn ą mq

2
dmn “ 0
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so that

Kmn
j “

1` 11pn ą mq

2
pXjmXjn ´ peSXmqXjn ´XjmpeSXnqq .

Reintroducing the market index t, these are the artificial regressors Kjt
mn whose

coefficients are the elements of the matrix

V ν “ ΠVΠ1
`Σ

if the variance V of the micromoments is constant across markets t (and in particular

in the absence of micromoments, as V “ 0).

If we use micromoments, their observed covariance matrix Vt interacts with Kjt
mn

to create additional artificial regressors whose estimated coefficients are the products

of the elements of Π: the regression has
ÿ

m,n

Kjt
mnΣmn `

ÿ

m,n,r,s

ΠmrΠsnK
jt
mnVt,rs.

A.3 Higher-order Expansions in the Standard Model

Assume that there is no micromoment and the moments of order l of ε scale as σl.

Under these assumptions, we can write at the fourth-order

ξj “ logpSj{S0q ´XjΠ̄´H2jσ
2
´H3jσ

3
´H4jσ

4
`OP pσ

5
q, (21)

where H2,H3 and H4 are deterministic functions of X, S, and the moments of ε

up to the fourth order. Note that H2σ
2 corresponds to

řM
m“1

řM
n“mK

mnΣmn in the

main text.

Our first task here is to derive formulæ for H2,H3 and H4. We start by noting

that given (21),

Sj “ Eε
exppXjΠ̄` ξj `Xjεq

1`
řJ
k“1 exppXkΠ̄` ξk `Xkεq

“ Eε
Sj expprjq

S0 `
řJ
k“1 Sk expprkq

with rj ”Xjε´H2jσ
2 ´H3jσ

3 ´H4jσ
4 `OP pσ

5q. The leading term in both rj and

Rj ” expprjq ´ 1 is Xjε, which is of first order in σ. Using the eS notation and

dividing through by Sj, we get

1 “ Eε
1`Rj

1` eSR
.
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or, expanding to the fourth order in σ:

EεpRj ´ eSRq
`

1´ eSR` peSRq
2
´ peSRq

3
˘

“ 0. (22)

This has the form EεpRj ´ eSRqfpeSRq “ 0. Applying the linear operator eS to it

gives EεpeSR ´ eSeSRqfpeSRq “ 0. Now eSeSR “
řJ
k“1 SkeSR “ p1´ S0qeSR, so

that we obtain EεeSRfpeSRq “ 0. Therefore we must have EεRjfpeSRq “ 0 for

every j. Going back to (22), we need to solve

EεRj

`

1´ eSR` peSRq
2
´ peSRq

3
˘

“ 0. (23)

For small σ, and to the fourth-order,

Rj » rj ` r
2
j {2` r

3
j {6` r

4
j {24

»Xjε

´H2jσ
2
` pXjεq

2
{2 (24)

´H3jσ
3
´ pXjεqH2jσ

2
` pXjεq

3
{6

´H4jσ
4
`H2

2jσ
4
{2´ pXjεqH3jσ

3
´ pXjεq

2H2jσ
2
{2` pXjεq

4
{24

where the lines are ordered by increasing degree in σ.

Similarly, to the third order in σ:

eSR » peSXqε

´ peSH2qσ
2
` eSppXεq

2
q{2

´ peSH3qσ
3
´ peSpH2Xqεqσ

2
` eSppXεq

3
q{6;

peSRq
2
» ppeSXqεq

2

´ 2 ppeSXqεq peSH2qσ
2
` ppeSXqεq eSppXεq

2
q;

peSRq
3
» ppeSXqεq

3 .

To simplify notation, we define, for any vectors A,B,C,D:

rA,Bs “ EεpAεqpBεq

rA,B,Cs “ EεpAεqpBεqpCεq

rA,B,C,Ds “ EεpAεqpBεqpCεqpDεq.
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A.3.1 Second-order Terms

Since ε has mean zero, the only terms of order 2 in σ in (23) come from EεRj and

EεpRjeSRq; we have

EεRj “ ´H2jσ
2
` rXj,Xjs{2` opσ

2
q

EεpRjeSRq “ rXj, eSXs ` opσ
2
q.

It follows that

H2jσ
2
“ rXj,Xjs{2´ rXj, eSXs. (25)

Since rA,Bs “
řM
m“1

řM
n“1AmBnΣmn, this gives

H2jσ
2
“

M
ÿ

m“1

M
ÿ

n“1

XjmpXjn{2´ eSXnqΣmn

“

M
ÿ

m“1

XjmpXjm{2´ eSXmqΣmm

`

M
ÿ

m“1

M
ÿ

nąm

pXjmXjn ´XjmeSXn ´XjneSXmqΣmn

which is the formula given in Theorem 2.

A.3.2 Third-order Terms

Third-order terms appear in EεRj, EεpRjeSRq, and EεpRjpeSRq
2q. Collecting them

gives

H3jσ
3
“ rXj,Xj,Xjs{6´ peSrXj,X,Xs ` rXj,Xj, eSXsq{2` rXj, eSX, eSXs.

(26)

Take the simplest case, in which the components of the vector ε are independent with

respective third moments sm. Then

rA,B,Cs “
M
ÿ

m“1

AmBmCmsm

and

H3jσ
3
“

M
ÿ

m“1

`

X3
jm{6´XjmpeSX

2
mq{2´X

2
jmeSXm{2`XjmpeSXmq

2
˘

sm,

which is the formula given in Section 4.3.
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A.3.3 Fourth-order Terms

The fourth-order terms equire more work; we have

• in EεRj:

´H4jσ
4
`H2

2jσ
4
{2´ rXj,XjsH2jσ

2
{2` rXj,Xj,Xj,Xjs{24

which, given (25), equals

´H4jσ
4
` rXj, eSXs

2
{2´ rXj,Xjs

2
{8` rXj,Xj,Xj,Xjs{24.

• in EεpRjeSRq:

´
`

rXj, eSpH2Xqsσ
2
` reSX,XjsH2jσ

2
˘

` peSrXj,X,X,Xs ` rXj,Xj,Xj, eSXsq {6

`H2jpeSH2qσ
4
` eSrXj,Xj,X,Xs{4

´
`

rXj,XjspeSH2qσ
2
` eSrX,XsH2jσ

2
˘

{2

which, given (25), equals

rXj, eSXs
2
´ rXj,XjsrXj, eSXs{2´ eS prXj,XsrX,Xsq {2

` eS prXj,XsrX, eSXsq ` rXj, eSXsreSX, eSXs ´ rXj,XjseSrX,Xs{4

` peSrXj,X,X,Xs ` rXj,Xj,Xj, eSXsq {6` eSrXj,Xj,X,Xs{4.

• in EεpRjpeSRq
2q:

´ 2rXj, eSXspeSH2qσ
2
` eSrXj, eSX,X,Xs

` reSX, eSX,Xj,Xjs{2´ reSX, eSXsH2jσ
2

which, given (25), equals

´ rXj, eSXseSrX,Xs ` 3rXj, eSXsreSX, eSXs ´ rXj,XjsreSX, eSXs{2

` eSrXj, eSX,X,Xs ` rXj,Xj, eSX, eSXs{2.

• in EεpRjpeSRq
3q:

rXj, eSX, eSX, eSXs.
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Putting everything together gives

H4jσ
4
“ ´rXj, eSXs

2
{2´ rXj,Xjs

2
{8` rXj,XjsrXj, eSXs{2

` eS prXj,XsrX,Xsq {2´ eS prXj,XsrX, eSXsq

` rXj,XjseSrX,Xs{4´ rXj, eSXseSrX,Xs

` 2rXj, eSXsreSX, eSXs ´ rXj,XjsreSX, eSXs{2

´ peSrXj,X,X,Xs ` rXj,Xj,Xj, eSXsq {6´ eSrXj,Xj,X,Xs{4

` eSrXj, eSX,X,Xs ` rXj,Xj, eSX, eSXs{2

´ rXj, eSX, eSX, eSXs ` rXj,Xj,Xj,Xjs{24. (27)

To illustrate, assume that the εm terms are independent, with variances Σmm “ σ2
m

and excess kurtosis Eε4m ´ 3σ4
m “ κm. Then rA,Bs “

ř

mAmBmσ
2
m and it is easy to

see that

rA,B,C,Ds “ rA,BsrC,Ds ` rA,CsrB,Ds ` rA,DsrB,Cs

`
ÿ

m

κmAmBmCmDm.

The first line is quadratic in Σ and the second line is linear in κ. As a consequence,

the fourth-order term H4jσ
4 contains both terms that are linear in κ (from the last

three lines of (27)) and terms that are quadratic in Σ (in all seven lines). The first

group suggests introducing new artificial regressors

V j
m “ X4

jm{24´X3
jmeSXm{6´X

2
jmpeSX

2
mq{4`X

2
jmpeSXmq

2
{2

`XjmpeSXmqpeSX
2
mq ´XjmpeSXmq

3
´XjmeSpXmq

3
q{6,

whose coefficients are the excess kurtosis parameters κm. The second group yields
ÿ

m

σ4
mW

j
mm `

ÿ

m

ÿ

nąm

σ2
mσ

2
nW

j
mn

where

W j
mm “ Xjm

ˆ

eSXm ´
Xjm

2

˙

`

eSX
2
m ´ peSXmq

2
˘

and

W j
mn “ pXjmeSXn `XjneSXm ´XjmXjnq

ˆ peSXmXn ´ peSXmqpeSXnqq .
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Note that the new artificial regressors W are assigned products of the elements of

Σ. Estimating the resulting regression requires nonlinear optimization (albeit a very

simple one).

A.4 Proof of Theorem 3

In the unmixed model (σ “ 0) the mean utility of alternative j is Uj “ Ik`λk logSj|Nk

if j P Nk, with Ik ” logpSNk
{S0q and Sj|Nk

” Sj{SNk
.This gives

ξ0j “ ´Xjβ ` logpSNk
{S0q ` λk logSj|Nk

.

As in Appendix A.1, we decompose ε “ σBv. We now denote x “ B1X 1 so that

Xε “ σx ¨ v. We write (imposing a1j “ 0 from the start as this is a general property

of models with Ev “ 0)

Ujpvq “ logpSNk
{S0q ` λk logSj|Nk

` σxj ¨ v `
σ2

2
a2j

and

exppIkpvq{λkq “
ÿ

jPNk

exppUjpvq{λkq “ pSNk
{S0q

1{λk f̄kpvq

where we denote X̄k “
ř

jPNk
Sj|Nk

Xj and

fjpvq “ exp

ˆ

σ

λk

´

xj ¨ v ` σ
a2j
2

¯

˙

» 1`
σ

λk
pxj ¨ vq `

σ2

2λ2k

`

λka2j ` pxj ¨ vq
2
˘

so that

f̄kpvq » 1`
σ

λk
sxk ¨ v `

σ2

2λ2k

`

λkā2k ` Ğpx ¨ vq2k
˘

.

Now using

Sj “ Ev expppUjpvq ´ Ikpvqq{λkq
exppIkpvqq

1`
řK
l“1 exppIlpvqq

we get

1 “ Ev

˜

fjpvq

f̄kpvq

`

f̄kpvq
˘λk

S0 `
řK
l“1 SNl

`

f̄lpvq
˘λl

¸

.

We note that

1` aσ ` bσ2

1` cσ ` dσ2
“ 1` pa´ cqσ ` pb´ d´ cpa´ cqqσ2

`Opσ3
q. (28)
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Denote Âj|k “ Aj ´ Āk. Applying (28) gives

fjpvq

f̄kpvq
» 1`

σ

λk
Cjpvq `

σ2

2λ2k
Djpvq.

with

Cjpvq “ x̂j|k ¨ v

and

Djpvq “ λk pa2j|k `
{px ¨ vq2j|k ´ 2px̄k ¨ vqpx̂j|k ¨ vq.

Moreover,

`

f̄lpvq
˘λl
» 1` σx̄l ¨ v `

σ2

2

˜

λl ´ 1

λl
px̄l ¨ vq

2
` ā2l `

Ğpx ¨ vq2l
λl

¸

and

`

f̄kpvq
˘λk

S0 `
řK
l“1 SNl

`

f̄lpvq
˘λl

»

1` σx̄k ¨ v `
σ2

2

´

ā2k `
λk´1
λk
px̄k ¨ vq

2 `
Ğpx¨vq2k
λk

¯

1` σeSx ¨ v `
σ2

2

´

eSa2 `
řK
l“1 SNl

´

λl´1
λl
px̄l ¨ vq2 `

Ğpx¨vq2l
λl

¯¯

where as usual eST “
řJ
j“1 SjTj “

řK
k“1 SNk

T̄k.

Then, using (28) again,

`

f̄kpvq
˘λk

S0 `
řK
l“1 SNl

`

f̄lpvq
˘λl

» 1` σEkpvq `
σ2

2
Fkpvq

with

Ekpvq “ px̄k ´ eSxq ¨ v

and

Fkpvq “ ā2k ´ eSa2

`
λk ´ 1

λk
px̄k ¨ vq

2
´

K
ÿ

l“1

SNl

λl ´ 1

λl
px̄l ¨ vq

2

`
Ğpx ¨ vq2k
λk

´

K
ÿ

l“1

SNl

Ğpx ¨ vq2l
λl

´ 2peSx ¨ vqppx̄k ´ eSxq ¨ vq.
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This allows us to write

1 » Ev

ˆ

1`
σ

λk
Cj `

σ2

2λ2k
Dj

˙ˆ

1` σEk `
σ2

2
Fk

˙

» Ev

ˆ

1` σ

ˆ

Cj
λk
` Ek

˙

`
σ2

2λ2k

`

Dj ` λ
2
kFk ` 2λkCjEk

˘

˙

.

We have EvCj “ EvEk “ 0; also,

EDj “ λk pa2j|k ` ‖xj‖2 ´Ę‖x‖2k ´ 2x̄k ¨ x̂j|k

EFk “ ā2k ´ eSa2

`
λk ´ 1

λk
‖x̄k‖2 ´

K
ÿ

l“1

SNl

λl ´ 1

λl
‖x̄l‖2

`
Ę‖x‖2k
λk

´

K
ÿ

l“1

SNl

Ę‖x‖2l
λl

´ 2peSxq ¨ px̄k ´ eSxq

EpCjEkq “ x̂j|k ¨ px̄k ´ eSxq.

Writing EpDj ` λ
2
kFk ` 2λkCjEkq “ 0 gives us an equation of the form

λkpa2j ´ ā2kq ` λ
2
kpā2k ´ eSa2q “ λ2kM ` νk ` µj

where

M “

K
ÿ

l“1

SNl

λl ´ 1

λl
‖x̄l‖2 `

K
ÿ

l“1

SNl

Ę‖x‖2l
λl

´ 2‖eSx‖2

νk “ Ę‖x‖2k ´ 2‖x̄k‖2 ´ λkpλk ´ 1q‖x̄k‖2 ´ λkĘ‖x‖2k ` 2λ2keSx ¨ x̄k ` 2λk‖x̄k‖2 ´ 2λkx̄k ¨ eSx

“ p1´ λkq
`

Ę‖x‖2k ´ p2´ λkq‖x̄k‖
2
´ 2λkx̄k ¨ eSx

˘

(29)

µj “ ´‖xj‖2 ` 2xj ¨ x̄k ´ 2λkxj ¨ px̄k ´ eSxq

“ xj ¨ p2λkeSx´ xj ` 2p1´ λkqx̄kq . (30)

It is easy to aggregate from a2j “ p1´ λkqā2k ` λkeSa2 ` λkM ` pνk ` µjq{λk to

ā2k “ eSa2 `M `
νk ` µ̄k
λ2k

and then to

S0eSa2 “ p1´ S0qM `

K
ÿ

k“1

SNk

νk ` µ̄k
λ2k

,
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which gives

a2j “ eSa2 `M ` p1´ λkq
νk ` µ̄k
λ2k

`
νk ` µj
λk

“
M

S0

`
1

S0

K
ÿ

l“1

SNl

νl ` µ̄l
λ2l

` p1´ λkq
νk ` µ̄k
λ2k

`
νk ` µj
λk

“
M

S0

`
1

S0

K
ÿ

l“1

SNl

νl ` µ̄l
λ2l

`
νk ` p1´ λkqµ̄k

λ2k
`
µj
λk
.

Finally, using equations (29) and (30) we aggregate

µ̄k “ 2λkx̄k ¨ eSx` 2p1´ λkq‖x̄k‖2 ´Ę‖x‖2k,

which gives

νk ` µ̄k “ 2λ2kx̄k ¨ eSx` λkp1´ λkq‖x̄k‖2 ´ λkĘ‖x‖2k
and

νk ` p1´ λkqµ̄k “ ´λkp1´ λkq‖x̄k‖2.

Putting everything together, we get

a2j “
M

S0

`
1

S0

K
ÿ

l“1

SNl

νl ` µ̄l
λ2l

`
νk ` p1´ λkqµ̄k

λ2k
`
µj
λk

“
1

S0

˜

K
ÿ

l“1

SNl

λl ´ 1

λl
‖x̄l‖2 `

K
ÿ

l“1

SNl

Ę‖x‖2l
λl

´ 2‖eSx‖2
¸

`
2

S0

‖eSx‖2 `
1

S0

K
ÿ

l“1

SNl

´Ę‖x‖2l ` p1´ λlq‖x̄l‖2

λl

“ xj ¨

ˆ

2eSx´
xj
λk
` 2

1´ λk
λk

x̄k

˙

´
1´ λk
λk

‖x̄k‖2.

We finally get the artificial regressors in Theorem 3 by replacing σ2xx1 with

X 1ΣX.

B A Detailed Examination of the Mixed Binary

Choice Model

The mixed binary choice model has J “ 1 and

S1 “ EβQpX1βq
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where the link function Q is the cdf of a random variable U and β is a vector of

random coefficients. We assume that U , X1 and β are mutually independent. For

notational simplicity, we drop the 1 subscript in this appendix: we write X and S.

As in the main text, we decompose β into its mean Π and its random variation ε.

B.1 The General Case

While we could apply the formulæ derived in Appendix A.3, it is easy and perhaps

instructive to derive the expansions for the mixed binary choice model directly. The

key reason is that if Q is invertible and smooth (as it almost always is in applications),

the Taylor expansion can be carried out in terms of simple functionals. For any order

k of the derivative, we can define a function Fk by

Qpkqptq ” FkpQptqq,

so that QpkqpQ´1pSqq ” FkpSq.

B.1.1 The Fourth-order Expansion

Let us write, as we did in Appendix A.3, the product effect as

ξ “ Q´1pSq ´XΠ´H2σ
2
´H3σ

3
´H4σ

4
`OP pσ

5
q,

so that

S “ EεQ
`

Q´1pSq ´H2σ
2
´H3σ

3
´H4σ

4
`Xε`OP pσ

5
q
˘

.

A fourth-order expansion gives

S “ S

` F1pSqEε
`

´H2σ
2
´H3σ

3
´H4σ

4
`Xε

˘

` pF2pSq{2qEε
`

´H2σ
2
´H3σ

3
´H4σ

4
`Xε

˘2

` pF3pSq{6qEε
`

´H2σ
2
´H3σ

3
´H4σ

4
`Xε

˘3

` pF4pSq{24qEε
`

´H2σ
2
´H3σ

3
´H4σ

4
`Xε

˘4

`Opσ5
q.
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Denote QkpSq “ FkpSq{pk!F1pSqq for k “ 2, 3, 4. Since ε has zero expectation, we

obtain

H2σ
2
`H3σ

3
`H4σ

4
“ Q2pSqEε

`

´H2σ
2
´H3σ

3
´H4σ

4
`Xε

˘2

`Q3pSqEε
`

´H2σ
2
´H3σ

3
´H4σ

4
`Xε

˘3

`Q4pSqEε
`

´H2σ
2
´H3σ

3
´H4σ

4
`Xε

˘4

`Opσ5
q.

Using the bracket notation of Appendix A.3 and dropping all terms of higher order

than σ4, we get

H2σ
2
`H3σ

3
`H4σ

4
“ Q2pSq

`

H2
2σ

4
` rX,Xs

˘

`Q3pSq
`

´3H2σ
2
rX,Xs ` rX,X,Xs

˘

`Q4pSqrX,X,X,Xs

`Opσ5
q.

Identifying the terms for each order of σ is very straightforward. At the second order,

we obtain

H2σ
2
“ Q2pSqrX,Xs;

at the third order,

H3σ
3
“ Q2pSqrX,X,Xs;

and at the fourth order,

H4σ
4
“ Q4pSqrX,X,X,Xs `Q2pSqH

2
2σ

4
´ 3Q3pSqH2σ

2
rX,Xs,

that is, after substituting the value of H2σ
2,

H4σ
4
“ Q4pSqrX,X,X,Xs `

`

Q2pSq
2
´ 3Q3pSqE

˘

Q2pSqrX,Xs2.

B.1.2 The Artificial Regressors

These formulæ are quite general: they hold for any regular cdf of U and any distribu-

tion of ε with enough moments. They show that the artificial regressors that should

be included in a second-order expansion are given by

Kmm
“ Q2pSqX

2
m
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and Kmn “ 2Q2pSqXmXn if n ą m.

To examine the higher-order terms, let us assume for simplicity that ε has a

distribution whose components are independent of each other with variances σ2
m ,

third-order moments sm, and fourth-order moments km, where σ2
m is of order σ2, sm

is of order σ3, and km is of order σ3. Then rX,Xs “
ř

m σ
2
mX

2
m, rX,X,Xs “

ř

m smX
3
m, and

rX,X,X,Xs “
ÿ

m

κmX
4
m ` 3

˜

ÿ

m

σ2
mX

2
m

¸2

,

where κm “ km ´ 3σ4
m is the excess kurtosis of εm.

In a third-order expansion, one would add the following artificial regressors to the

two-stage least-squares regression:

Tm “ Q3pSqX
3
m.

To test for skewness of the random coeffciient on covariate m, one could simply test

that the artificial regressor Tm can be omitted.

The formula for the fourth-order term illustrates two important points. First,

terms of higher orders can be computed without much difficulty. Second, each addi-

tional term adds information on lower-order moments (here σ2
m “ Eε2m), as well as

on the moments of higher order (here κm).

The model remains linear in the highest-order moments; here for the excess kur-

tosis κm we have new artificial regressors

Vm “ Q4pSqX
4
m.

On the other hand, the fourth and higher-order expansions introduce nonlinear func-

tions of the lower-order moments, which are here quadratic functions of the variances:

`

3Q4pSq `Q2pSq
3
´ 3Q2pSqQ3pSq

˘

nX
ÿ

m“1

nX
ÿ

n“1

σ2
mσ

2
nXmX

2
n,

and the model is not linear in these parameters any more. Define the new artificial

regressors

Wmm
“
`

3Q4pSq `Q2pSq
3
´ 3Q2pSqQ3pSq

˘

X4
m
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and

Wmn
“ 2

`

3Q4pSq `Q2pSq
3
´ 3Q2pSqQ3pSq

˘

X2
mX

2
n

for n ą m. Then the regression should include the terms

ÿ

m

Vmκm `
ÿ

m

Wmmσ4
m `

ÿ

m

ÿ

nąm

Wmnσ2
mσ

2
n.

This nonlinearity could be dealt with in several ways: by nonlinear optimization (of a

very simple kind), or by iterative methods. In any case, our simulations suggest that

stopping with the second-order expansion often gives results that are already very

reliable.

Finally, note that these formulæ can be extended in the obvious way to make U

or ε heteroskedastic; we would just add the argument X to the Fk functions in the

former case, and make σ2
m, sm, and km functions of X in the latter.

B.2 The Mixed Logit

When U is distributed as a logistic, the model is simply a mixed logit. The functions

Fk are easily computed:

F1psq “ sp1´ sq

F2psq “ sp1´ sqp1´ 2sq and Q2psq “ 1{2´ s

F3psq “ sp1´ sqp1´ 6sp1´ sqq and Q3psq “ 1{6´ sp1´ sq

F4psq “ sp1´ sqp1´ 2sqp1´ 12sp1´ sqq and Q4psq “ p1{2´ sqp1{12´ sp1´ sqq

Assuming again that random variation in preferences is uncorrelated across covariates,

the artificial regressors are

Km “

ˆ

1

2
´ S

˙

X2
m

Tm “

ˆ

1

6
´ Sp1´ Sq

˙

X3
m

Vm “

ˆ

1

2
´ S

˙ˆ

1

12
´ Sp1´ Sq

˙

X4
m

Wmn “ ´

ˆ

1

2
´ S

˙

Sp1´ SqX2
mX

2
n.
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B.2.1 Identification

The form of the artificial regressors holds interesting insights about identification.

Denote X “ pX,K “
`

1
2
´ S

˘

X2q the natural and artificial regressors. The optimal

instruments are the nonparametric projections Z2 “ E pX |Zq.

Suppose for simplicity that ξ is homoskedastic across markets. Then the asymp-

totic covariance matrix of our estimator θ̂ is given by the usual formula:

T Vasθ̂ » TV pξqEpZ 12Z2q
´1.

Suppose for instance that the residual variation in the projected artificial regressor

EpKm|Zq is very well explained in a linear regression on the projected covariates

EpX|Zq and the other EpKn|Zq. The fourth-order Wmn do not help since they also

contain a term p1
2
´Sq. The estimate of σ2

m will be very imprecise, and random taste

variation on the characteristic Xm is probably best left out of the model.

It is easy to program a symbolic algebra system to compute even higher-order

terms, given more distributional assumptions. To illustrate this, consider a mixed

logit with one covariate only (nX “ 1), whose random coefficient has a Gaussian

distribution: ε is Np0, σq2. The expansion to order 2L can be written

ξ “ log
S

1´ S
´ βX ´

L
ÿ

k“1

tkpSq
`

σ2X2
˘k
`Opσ2L`2

q.

This is how we generated Figure 1 in the main text, which plots the terms tkpSq for

k “ 1, 2, 3, 4 as the market share S goes from zero to one.

B.3 The Mixed Probit

For completeness, assume that U is distributed as a standard Gaussian Np0, 1q. Then

the Qk are proportional to the Hermite polynomials:

Q2psq “ ´s{2

Q3psq “ ps
2
´ 1q{6

Q4psq “ p3s´ s
3
q{24
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and when the random variation is uncorrelated across covariates, the artificial regres-

sors are very simple:

Km “ ´SX
2
m{2

Tm “ pS
2
´ 1qX3

m{6

Vm “ p3S ´ S
3
qX4

m{24

Wmm “ ´SX
4
m{8

Wmn “ ´SX
2
mX

2
n{4 for n ą m.

C Extensions

This appendix shows how our method applies to a nested logit with random coeffi-

cients, and to a model of count data with unobserved heterogeneity.

C.1 The Two-level Mixed Nested Logit

Compiani (2021) applies a nonparametric approach to the choice among a very large

set of products. He shows that the mixed logit specification forces the price elasticity

to become “too small” at high price levels. This raises the question of the appropriate

choice of a distribution for the idiosyncratic terms uijt.

For the mixed logit (J “ 1), it is very easy to compute the artificial regressors

for any distribution of the idiosyncratic terms; we give the formulæ in Appendix ??.

When J ą 1, the space of possible distributions increases dramatically. The compu-

tations also become more complicated. Finally, estimating the additional parameters

of the distribution of u requires (simple) nonlinear optimization.

For illustrative purposes, we give here the estimating equations for the two-level

nested logit model. Assume that there is a nest for good 0, and K nests N1, . . . , NK for

the varieties of the good. For k “ 1, . . . , K, we denote λk the corresponding distribu-

tion parameter—with the usual interpretation that p1´λkq proxies for the correlation

between choices within nest k, and that the multinomial logit model obtains when all

λk “ 1.

We denote the market share of nest k by SNk
“

ř

jPNk
Sj. Take any variable
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T “ pT0, T1, . . . , TJq. We define the within-nest-k share-weighted average as

T̄k “
ÿ

jPNk

Sj
SNk

Tj.

Note in particular that eST “
řK
k“1 SNk

T̄k.

The following result is the equivalent of Theorem 2 for the two-level mixed nested

logit. We relegate its proof to Section A.4.

Theorem 3 (The Artificial Regressors for the Mixed Nested Logit). For j P Nk, the

artificial regressors are

Kjt
mm “

ˆ

Xjt,m

2
´

1´ S0tλk
1´ S0t

etm

˙

Xjt,m

λk
`

1´ λk
λk

X̄kt,m

ˆ

X̄kt,m ´
2Xjt,m

λk

˙

and for any off-diagonal term n ă m,

Kjt
mn “ Xjt,mXjt,n ´

1´ S0tλk
1´ S0t

etmXjt,n ` etnXjt,m

λk

` 2
1´ λk
λk

ˆ

X̄kt,mX̄kt,n ´
X̄kt,mXjt,n ` X̄kt,nXjt,m

λk

˙

where etm “
řJ
j“1 SjtXjtm as per Definition 2.

If the λk parameters are known, then our procedure becomes:

Algorithm 3. FRAC estimation of the two-level nested logit BLP model

1. on every market t, augment the market shares from ps1t, . . . , sJtq to pS0t, S1t, . . . , SJtq

2. for every nest k and product-market pair pj P Nk, tq :

(a) compute the market-share weighted covariate vector et “
řJ
l“1 SltXlt and

the within-nest weighted average covariate vector

X̄k,t “
ÿ

lPNk

Slt
SNk,t

Xlt

(b) for every pm,nq in I, compute the “artificial regressor”

Kjt
mm “

ˆ

Xjt,m

2
´

1´ S0tλk
1´ S0t

etm

˙

Xjt,m

λk
`

1´ λk
λk

X̄k,t,m

ˆ

X̄k,t,m ´
2Xjt,m

λk

˙
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and for any off-diagonal term n ă m,

Kjt
mn “ Xjt,mXjt,n ´

1´ S0tλk
1´ S0t

etmXjt,n ` etnXjt,m

λk

` 2
1´ λk
λk

ˆ

X̄k,t,mX̄k,t,n ´
X̄k,t,mXjt,n ` X̄k,t,nXjt,m

λk

˙

.

(c) define

yjt “ log
SNk,t

S0t

` λk log
Sjt
SNk,t

3. run a two-stage least squares regression of y on X and K, taking as instruments

a flexible set of functions of Z

4. (optional) run a three-stage least squares (3SLS) regression across the T markets

stacking the J equations for each product with a weighting matrix equal to the

inverse of the sample variance of the residuals from step 3.

If the parameters λ are not known, then things are slightly more complicated: the

formulæ cannot be made linear in λ, and there are no corresponding artificial regres-

sors. Estimating pΠ,Σ,λq requires numerical minimization over the λ parameters.

More general distributions in the GEV family could also be accommodated. As the

nested logit example illustrates, there is a cost to it: the approximate model becomes

nonlinear in some parameters. Note however that if there is reason to believe that the

true distribution is close to the multinomial logit (say λ » 1 in the example above),

then one can take expansions in the same way we did for the random coefficients and

use a 2SLS estimate again.

C.2 Estimating Count Data Models with Heterogeneity

Consider the model defined in (4):

PrpK “ k|Xq “ Eεqkpηk `Xkβ, εq

and let the estimating equations be Epηk|Zkq “ 0 for some set K Ă N. First, we

estimate the ykpXq from the observed counts. Then we define f0,kpXq as a solution
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of ykpXq “ qkpf0,kpXkq, 0q (assumed to exist) for each k P K. Define dk “ f0,kpXkq ´

ηk ´Xkβ. This gives us the system of equations

ykpXq “ Eεqkpf0,kpXkq´dk, σεq » qkpf0,kpXq, 0q´
Bqk
Ba
pf0,kpXkq, 0qdk`

σ2

2

B2qk
Ba2

pf0,kpXkq, 0q

for k P K, where we denote qk “ qkpa, bq.

Since by definition ykpXq “ qkpf0,kpXkq, 0q, this gives dk » σ2Ak where the artifi-

cial regressor Ak solves

Bqk
Ba
pf0,kpXkq, 0qAk “

1

2

B2qk
Ba2

pf0,kpXkq, 0q.

Then we have

0 “ Epηk|Zkq “ Epf0,kpXkq|Zkq ´ EpXk|Zkqβ ´ σ
2EpAk|Zkq.

This allows us to estimate β and σ2 by regressing, for all subpopulations X “ pXkqkPK

and for all k P K, f0,kpXkq on Xk and Ak with instruments Zk.

Once we have estimators β̂ and pσ2, we can estimate the demand shifters by

η̂k “ f0,kpXkq ´Xkβ̂ ´ pσ2Ak.

It is easy to compute a Newton-Raphson correction: pick a distribution for ε, find

values of ηk that solve

ykpXq “ Eεqkpηk `Xkβ̂, σ̂εq,

and replace f0,kpXkq with f0,kpXkq ` ηk ´ η̂k in the regression.

The Poisson model with heterogeneity To illustrate this, let us consider the

classic heterogeneous Poisson model

PrpK “ k|Xq “ Eεpk pλq

where pkpλq ”
λk expp´λq

k!
, and we introduced a demand shifter η so that

λ “ exppXβ ` η ` σεq.

Then all Xk ” X, all ηk ” η, and the functions qk take the following form:

qkpa, bq “
exppkpa` bqq expp´ exppa` bqq

k!
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where we substitute a “Xβ ` η and b “ σε.

We start by solving ykpXq “ Ek expp´Eq{k! for E. For given k, this equation

has solutions only if ykpXq ă qkplog k, 0q “ kk expp´kq{k!, and then it has two: one

with E ă k and one with E ą k. We should choose the most reasonable one Ek,

perhaps by making sure that the solutions in E for the different values of k are not

too different. This gives us f0,kpXq “ logEk. Since

Bqk
Ba

“ pk ´ exppaqqqk

and
B2qk
Ba2

“
`

pk ´ exppaqq2 ´ exppaq
˘

qk

we get after substituting a with f0,kpXq the artificial regressor

Ak “
pk ´ Ekq

2 ´ Ek
2pk ´ Ekq

.

In this setting, 2SLS regresses f0,kpXq “ logEk on X and on Ak with instruments

Z.

In the Poisson model with heterogeneity, it is easy to compute higher-order terms.

The third-order artificial regressor is

Tk “
pk ´ Ekq

3 ´ 3kpk ´ Ekq ´ Ek
6pk ´ Ekq

,

for instance.

D Descriptive Features of the Monte Carlo Simu-

lations of Section 7

For each simulation run, we estimate the conditional expectation of the price of

product j in market t given the vector of instruments by a linear regression of pjt on

the 36 elements of Wjt. Denoting V̄ “
ř

j,t Vjt{pJT q for any variable V , we use the

true parameter values to compute

V D
1 “

1

JT

T
ÿ

t“1

J
ÿ

j“1

pX 1
jtβ̄

x
´ β̄pEppjt|Wjtq ´ pX̄

1β̄x ´ β̄pEpp|W qqq
2;
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V D
2 “

1

JTns

T
ÿ

t“1

J
ÿ

j“1

ns
ÿ

i“1

pX 1
jtpβ

x
i ´ β̄

x
q ´ pβpi ´ β̄

p
qEppjt|Wjtqq

2;

and

V D
3 “

1

JT

T
ÿ

t“1

J
ÿ

j“1

ξ2jt.

We take the shares of V D
1 , V

D
2 , and V D

3 in the total variance V D
1 `V

D
2 `V

D
3 to represent

the contributions of, respectively, the variation in covariates and instrumented prices;

the random variation in consumer preferences; and the product effects.

For the supply side, we run an OLS regression:

pjt “ α0 ` W 1
jtα ` ξjtαξ ` ωjtαω ` vjt

and we define

V S
1 “

1

JT

T
ÿ

t“1

J
ÿ

j“1

pWjt ´ W̄ q
1α̂q2;

V S
2 “

1

JT

T
ÿ

t“1

J
ÿ

j“1

pξjtα̂ξ ` ωjtα̂ωq
2;

and

V S
3 “

1

JT

T
ÿ

t“1

J
ÿ

j“1

v̂2jt.

We take the shares of V S
1 , V

S
2 , and V S

3 in the total variance V S
1 ` V S

2 ` V S
3 to rep-

resent the contributions of, respectively, the variation in the cost-shifters and the

demand covariates; the unobserved demand- and supply-side product effects; and the

unexplained part.

Figure 17 (resp. Figure 18) shows the variance decomposition for demand (resp.

supply) in our various scenarii. As can be seen in Figure 17, our twelve scenarii allow

for a broad range of variance decompositions. Figure 18 shows that the cost-shifters

only explain a small share of the variance in supply when γ “ p0.1,´0.1,´0.1q, and

a still modest one for γ “ p0.2,´0.2,´0.2q.
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Figure 17: Variance Decomposition for Demand
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Figure 18: Variance Decomposition for Supply
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