The Econometrics of Matching with Transferable Utility:
A Progress Report'

Pierre-André Chiappori® Dam Linh Nguyen?
Bernard Salanié*

October 21, 2025

'We thank Thierry Magnac and Shruti Sinha for helpful comments. A previous ver-
sion of this paper was circulated under the title “Matching with Random Components:
Simulations”.

?Department of Economics, Columbia University. Email: pc2167@columbia.edu

3Department of Economics, New York University. Email: n.linh@nyu.edu

4Department of Economics, Columbia University. Email: bsalanie@columbia.edu


mailto:pc2167@columbia.edu
mailto:n.linh@nyu.edu
mailto:bsalanie@columbia.edu

Abstract

Since Choo and Siow (2006), a burgeoning literature has analyzed matching markets
when utility is perfectly transferable and the joint surplus is separable. We take stock
of recent methodogical developments in this area. Combining theoretical arguments
and simulations, we show that the separable approach is reasonably robust to omitted
variables and /or non-separabilities. We conclude with a caveat on data requirements
and imbalanced datasets.



Introduction

The empirical analysis of matching markets has made considerable progress in recent
years. We will focus here on markets where partners exchange transfers freely. In
the usual terminology, we study matching markets with perfectly transferable utility
(hereafter “T'U”). In most matching markets, observationally identical agents end up
with very different matching outcomes: some may be unmatched, and others will
be matched to partners with variable observable characteristics. This can be ra-
tionalized by introducing frictions, unobserved heterogeneity, or a mixture of both.
As explained in Chiappori and Salanié (2016), these two groups of rationalizations
have essentially identical predictions for cross-sectional data; they can only be distin-
guished with data featuring transitions, which are often unavailable to the analyst.
We choose here to model the dispersion of outcomes using unobserved heterogeneity.
More precisely, we work with the class of models pioneered by Choo and Siow (2006),
which incorporates a quasi-additive error structure called separability by Chiappori,
Salanié, and Weiss (2017). Galichon and Salanié (2017, 2022) study the properties
of separable models in much more detail. Galichon and Salanié (2024a) show that
this class of models can be easily estimated using minimum distance, which often
boils down to generalized least squares; and that the Choo and Siow model can also
be estimated with Poisson GLM.

Beyond Choo and Siow (2006), this framework has been applied by Chiappori,
Salanié, and Weiss (2017) to changes in the marital college premium in the US. Ahn
(2023) used it to analyze cross-border marriages in South-East Asia, and Chiappori,
Florio, Galichon, and Verzillo (2024) to describe matching on income levels in the
marriage market. It was also applied to the labor market (in a many-to-one ver-
sion) by Corblet (2022), and to mergers and acquisitions by Guadalupe, Rappoport,
Salanié, and Thomas (2024). It was extended to continuous types by Dupuy and
Galichon (2014) to study the contribution of personality traits to marital surplus; by
Galichon, Kominers, and Weber (2019) to imperfectly transferable utilities; and by
Ciscato, Galichon, and Goussé (2019) to non-bipartite matching in order to compare
same-sex and different-sex marriages.

By definition, separability rules out the interaction between partners’ unobserved
heterogeneity in the production of joint surplus. While it is a very useful assumption
for keeping the model tractable, it is also restrictive, especially if the set of character-
istics available to the analyst is small. A standard intuition would suggest that this
may not matter much if unobserved characteristics are drawn independently of ob-
served characteristics. However, we are dealing here with a two-sided market where
we cannot just transpose this intuition. The first goal of this paper is to explore



the consequences of relaxing separability on equilibrium matching patterns, utilities,
and division of surplus. We will also quantify the misspecifications that result from
mistakenly assuming separability when estimating a non-separable model.

Theoretical arguments and a Monte Carlo simulation suggest that non-separability
impacts matching patterns and utilities in ways that, ex post, seem intuitive. It takes
a rather large amount of non-separability to see a qualitative difference from the
separable case, however. We find that when we estimate a non-separable model as if
it were separable, the estimated complementarities in surplus are surprisingly robust.
This is reassuring since we have known since Becker (1973) that complementarities
play a crucial role in TU matching markets. Our conclusions are strongest when the
distributions of the observable characteristics of the partners are similar (“symmetric
margins”). As we will see, non-separabilities matter more when markets are very
unbalanced.

The second contribution of the paper is to point out that estimates may be fragile
when the data contain matching cells of very different size. We give a simple, two-by-
two example to show that the asymptotic variance of the estimator may be dominated
by the inverse of the size of the smallest cell, unless precautions are taken to minimize
its influence.

The remainder of the paper is organized as follows. Section 1 introduces the
class of separable matching models with perfectly transferable utilities. Section 2
discusses the separability assumption and its implications. Section 3 explores the
consequences of omitted variables and of mistakenly imposing separability. Section 4
discusses the effects of imbalanced data, and how to remedy them. We conclude with
some directions for further work.

1 Model and Methods

We focus throughout on a bipartite one-to-one model of matching with unobserved
heterogeneity and perfectly transferable utilities'. Since it is similar to Becker’s
“marriage market”, we will use that terminology and refer to potential partners as
“men” and “women”. Our framework easily accommodates other interpretations. We
maintain some of the standard assumptions: matching is frictionless and all potential
partners have the same information. The analyst only observes a subset of individual
characteristics.

Men are indexed by ¢ € Z and women by j € J. Each man ¢ (resp. woman j) has
a “type” x; € X (resp. y; € V). This is observable to all men, all women, and to the

!Galichon and Salanié (2024a) extend the analysis to more complex separable models.



analyst. When a man 7 and a woman j marry, their match generates a surplus éij
which they can share freely. Singles match to “0”: a single man ¢ attains a utility of
<:DZ~0 and a single woman 5 attains éoj.

This paper will assume that the sets of types are finite: X = {1,..., X} and
Y ={1,...,Y}. As mentioned in the introduction, Dupuy and Gahchon (2014)
extend the model to continuous types. We will denote by ® = (CIDU) —1,..I;j=1,.,7 the
matrix of surpluses.

A matching is a list of numbers (u;, ftio, foj)iz1...1j=1....7, With p;; = 1 if ¢ and j
match, p;o = 1 if 7 is single, etc. We focus on the stable matching (it is generically
unique). Since only types are observed by the analyst, the data consist of matching
patterns: the numbers of men and women of each type, which we denote n, and
m,, and the numbers of marriages p,, between men of each type x and women of
each type y. By construction, p,o = n, — 22;1 fay and g, = my — Zle fzy are
the numbers of single men of type x and of single women of type y. Note that in
some empirical applications, the analyst may not observe singles—only the numbers
of marriages fizy.

We denote by ® and p the matrix of surpluses and the matching patterns, re-
spectively; and r = (n, m) the margins, i.e., the numbers of men and women of each
type. Like most of the literature, we work with the large market limit in which the
vectors n and m grow proportionately.

1.1 Separability

The separable model restricts the form of the surplus i)zj It imposes that there
exist a matrix ® = (Pyy)eex yey, random variables € = (gp,¢},...,¢}), and 7 =
(%, 1, - - k) such that

DQjj = Py, gy, + 5;]» + Uii (1)

within any match, and that single men and women get ®;y = el and <i>0j = 778,
respectively. Moreover, the random vectors e (resp. il ) are assumed to be drawn
independently of each other, conditional on x; (resp. y;).

Chiappori, Salanié, and Weiss (2017) and Galichon and Salanié (2017, 2022, 2024a)
studied the class of separable models in depth. They derived some of their properties,
proved identification results, and proposed estimators. We summarize them briefly
here and refer the reader to recent surveys by Salanié (2024) and Galichon and Salanié
(2024b) for more information.



1.1.1 Identification

We assume in this paper that the available data only describe “who matches with
whom”: that is, they consist of the matching patterns . Data on transfers between
partners and/or proxies for the outcomes of matches, if available, may provide more
identifying power?.

Galichon and Salanié (2022) show that the stable matching patterns maximize the
social welfare (the sum of the surpluses of all matches)

X Y
ZZ fhay Py + E (1)

where the generalized entropy £ depends on the margins r and on the distributions
of the €' and 7/ terms. This is a globally strictly convex problem. When (as we
will assume) these terms have full support, all matching patterns must be strictly
positive and the set of first-order conditions

o0&
By == () @)

defines what can be identified from a single matching market.

For any choice of the distributions of the ' and 7 terms, the joint surplus matrix
® is just identified. If for instance the analyst wants to identify the standard errors
of these terms, restrictions on the joint surplus must be imposed. The alternative
is to pool data from several markets and impose cross-market restrictions. This was
the approach of Chiappori, Salanié, and Weiss (2017), for instance.

When the analyst only observes realized matches (no data on singles), a similar
set of equations apply; but they only identify the joint surplus matrix up to arbitrary
additive transformations ®,, — ®,, + a, + b,. This simply translates the fact that
the value of marriage cannot be identified without data on the proportion of singles.

1.1.2 Inference

Now suppose that the distributions of the unobserved heterogeneity terms (resp. the
joint surplus matrix ®) are known up to a parameter vector a (resp. 3), and that the
model is identified from data on a single market®. For any value of a, the generalized
entropy £% can be evaluated easily—often in closed form. Given observed matching

2See Salanié (2015) for the case when transfers are observed.
3This is typically the case if the dimensions of & and 8 add up to X x Y or less.



patterns fi , the parameters («, (3) can be estimated by minimizing the norm of the
X x Y vector with components

The resulting minimum distance estimator has the usual properties: it is consistent
and asymptotically normal; there is a choice of the norm that minimizes its variance-
covariance matrix; and for that choice of the norm, the minimized value of the
objective function provides a x? test of the specification.

While we focus here on parametric models, we note that Gualdani and Sinha
(2023) have explored nonparametric inference in this context.

1.2 The Choo and Siow Specification

The best-known and most convenient separable model has the “multinomial logit”
form popularized by Choo and Siow (2006). They assumed that each component
of the vectors €® and 7 is drawn independently from a centered standard type I
extreme value distribution. They showed that the stable matching patterns g obey
very simple formulee: the number p,, of marriages between men of education x and
women of education y can be written as

Hazy = A/ Hzotoy eXp(q)wy/z)

where p1,0 (resp. joy) is the number of men of education x (resp. women of education
y) who are single in equilibrium.

This gives X x Y equations in X x Y + X +Y unknowns; the system is completed
by the scarcity constraints

Y

Ng = Z Hazy + 20
y=1
X

my = Z Hay + Hoy-

r=1

Galichon and Salanié (2022) show how given the “margins” (n,), (m,) and the joint
surplus matrix ®, this system of equations can be solved very efficiently using an Ite-
rative Projection Fitting Procedure (IPFP). Identification is straightforward: since
the distributions of the unobserved heterogeneity terms are parameter-free, the joint



surplus matrix ® is just identified from the matching patterns p. In fact, the ge-
neralized entropy in this case is the usual entropy, and the first-order conditions (2)
give
2
P,, = log My
Hzo Moy
When the numbers of singles are not observed, ®,, = 2log jiz,+a,+b,, with arbitrary
a and b. In addition to the minimum distance procedure described earlier, a Poisson
model with two-way fixed effects can be used to estimate the Choo and Siow model
(see Galichon and Salanié 2024a).
Since the Choo and Siow (2006) specification is so simple and has been widely used,
it is a natural benchmark and we will use it in our examples. It has been criticized on a
number of grounds, however; see for instance Galichon and Salanié (2017, 2019, 2022).
Since the components of € are independent of each other, the specification rules
out “local” correlations. In addition, the Choo and Siow matching model inherits
a two-sided version of the Independence of Irrelevant Alternatives property of the
one-sided multinomial logit. As in the one-sided case, this has some advantages and
many drawbacks?.

2 Discussion of Separability

By definition, separability rules out any contribution to the joint surplus of a match
of interactions between characteristics of partners that are unobserved by the analyst.
Separability is best viewed through the lens of an ANOVA decomposition: it requires
that conditional on the observed types of the partners, interactions between their
unobserved types do not contribute to the variation in the surplus.

Separability does not rule out “matching on unobservables” a man i of education
x and a woman j of type y are more likely to marry if his 8; and her 7’ take higher
values. It does have strong consequences, however. Suppose ¢ and 7 do marry at the
stable matching. Since this man gets utility U,, —i-e;, he would be equally happy with
any other woman of type y. If for instance the observed types only record education,
and 1,000 couples form between college-educated partners, one could shuffle these
1,000 men and 1,000 women without changing anyone’s utility level.

As can be seen from this example, separability is more restrictive when the data
contain little information on types and /or unobserved heterogeneity is highly relevant
for the application under study. In a sense, assuming separability acknowledges that

“See Mourifié (2019) and Mourifié and Siow (2017) for extensions of the Choo and Siow frame-
work that reach beyond separable models.



in these two-sided problems, the data are unlikely to give us much information about
interactions between unobserved components®. Still, it is worth investigating whether
separable models yield robust conclusions.

Separability has very useful properties that greatly simplify analysis and inference.
It implies that at the stable matching, there exist matrices U and V = ® — U such
that if a man ¢ of type x and a woman j of type y marry in equilibrium, he gets
utility

Ui = Uyy + £} = max(e), I?iéfc(Um + &)
and she gets v; = Vi, + 10 = max(1), rilgfc(‘/zy + 7).

The stable matching g is homogeneous of degree 1 in the vector (n,m): if the
numbers of men and women of each type are multiplied by a common positive integer
k, then all numbers of marriages i, and of singles ji,0 and pg, are multiplied by &
as well. On the other hand, utilities are unchanged; in that sense, there is no scale
effect in a separable matching market.

As the matching patterns maximize the social welfare, which is globally convex, its
Hessian must be semi-definite positive at the optimum. This entails testable impli-
cations that (depending on the available data) may allow for tests of the separability
assumption (see Galichon and Salanié 2022).

3 Misspecifying Separability

We explore here the consequences of mistakenly imposing separability. There are of
course many ways to add non-separable components to a separable matching model.
We could for instance add a simple interaction term to Equation (1):

Oij= 0y +7(e), +1))+0&i - (3)

with 7 and o two positive parameters that control the relative strength of the non-
separable component. We call this a case of “missing interaction”.

Alternatively, we could use a “missing shock” model. Generate a matrix v =
(Vij)iz1,..1;j=1,..,s of independent draws from some mean-zero distribution and take
v;; to represent a pair-specific unobserved preference shock:

by = gy, +7(), + 1) + oV (4)

In both cases, we recover the separable surplus in (1) if we set 7 =1 and o = 0.

°But see Fox, Yang, and Hsu (2018) for some results along these lines.



3.1 Missing Interactions

Missing interactions may not create major difficulties, as long as they are only weakly
correlated to the included interactions. Suppose that the true model is as in Choo
and Siow, with one difference: the types  and y are continuous variables distributed
as two zero-mean Gaussian random variables in R, We take the joint surplus to
have the following quadratic form:

K+1

P(z,y) = Z Apiy.

kl=1

This is a version of the quadratic-normal Tinbergen (1956) model. It follows from
Bojilov and Galichon (2016) that the stable matching is described by an affine map-
ping between men and women types: y = Tx+& where conditional on x, £ has mean
zero. The matrix T' depends on the matrix A and the variance-covariance matrices
Y, and X, of © and y. The matrix T" can be estimated simply by regressing y on
x over observed matches. Moreover, given ¥, and 3, (which are easily estimated),
the mapping from A to T can be inverted to recover an estimator of a.

Now suppose that there are no interactions between x 1 and (y1, ..., yx), as well
as between yr 1 and (x1,...,2k), so that the matrix A has the same block-diagonal

structure:
K

O(z,y) = Z Awxiy + A1, k1 TK YK +1-
k=1

If we only observe (z1,...,xx) and (yi,...,yx), can we still estimate consistently
the coefficients (A1, ..., Axk)? This obviously won’t work in general: if for instance
E(rxi1|T1, ... 2x) = 1 and E(yx11|y1, - - -, Yx) = Y1, then omitting x4 and yx 11
will bias the estimate of the coefficient A;;. However, if we further assume that the
(K +1)-th components of & and y are independent of the first K components, the an-
swer is positive®. This is easy to see from the formulee in Bojilov and Galichon (2016,
Theorem 1): under our assumptions, the matrix T inherits the block-diagonal struc-
ture of 3, and its top-left (K, K') block does not depend on the value of Ag_. 1 x+1 or
of the variances of xx 1 and yx 1. As a consequence, the coefficients (A, ..., Axk)
can be estimated by regressing the vector (yi,...,yx) on the vector (z1,...,2k).

It follows from this result that if we do not observe xy 1 or yx,1, we can still
get consistent estimates of (Ai1,..., Axk). This finding obviously extends to more
general block structures. It is superficially similar to classic results on (the absence

STf some omitted variables are not independent of the included variables, one could conceivably
use instrumental variables, as is done in a linear model. We leave this for further research.



of) omitted variable bias in the linear model: it is much less general, however. It only
obtains here because with a quadratic joint surplus and Gaussian types, the “optimal
transport map” y = T'(x) yields a linear statistical model. Still, this suggests that
the separable model has some degree of robustness to omitted variables that are
functionally and statistically independent of those that are included.

3.2 Missing Shocks

Let us now turn to the model of (4), where the true joint surplus includes pair-
specific unobserved preference shocks that are excluded from the estimated model.
We explored this case extensively via Monte Carlo simulations. We assumed that
the € and 7 terms are drawn independently from a standard type I extreme value
distribution, as in the Choo and Siow (2006) model. The total variance of the surplus
in the separable (¢ = 0,7 = 1) model is 2; we ensure that it is the same in the non-
separable model by imposing 7> = 1 — ¢/2. This implies that ¢ must take values in
[0,+/2]. To put it differently, it is tempting to define a “coefficient of determination”
by R* = ¢%/2. It represents the fraction of the total variation in the joint surplus that
is explained by the non-separable component (the pair-specific individual preferences
vy;) for given z; and y;. Our simulations will cover the whole range from R? = 0 to
R =1

We found that the biases that result from this misspecification grow slowly with
the magnitude of the contribution of the interaction terms. In particular, the esti-
mated complementarities in the Choo and Siow (2006) model are remarkably robust
to the inclusion of interaction terms.

3.2.1 Some Theory

We do not know of any study of the properties of matching under non-separability,
even in the limit case where R* = 1. However, we state below two results and a
conjecture.

Our first result builds on standard properties of linear programs in Euclidean
spaces. As is well-known, the solution to any such program is generically unique and
robust to small changes in the parameters. To put it more formally, define a general
linear program as

max cx st. Ax <b
xeR™

and assume that A and b define a non-empty constrained set. Then the problem has
a solution set (A, b, ¢). For a generic choice of (A, b, ¢), the solution is a singleton;



and if (A’ b, ') is close enough to (A, b, ¢),
(A Y, ) =x(A,Db,c).

Whether it is separable or not, TU matching is an instance of a linear program;
and it is finite-dimensional if the number of potential partners is finite. Therefore
for a generic draw of the parameters, the optimal matching is a piecewise constant
function of ¢. In particular, it is generically the same for fully separable and for
almost separable models:

Result 1: in finite markets, generically (for almost all draws), there is a & such
that the optimal matching is the same for all 0 < 0 < 7.

Result 1 exploits the fact that in finite markets, any statistic of the model that
is a continuous function of ¢ is locally constant. This does not extend to the “large
markets” limit that is usually assumed in the empirical applications of separable
matching models: then such statistics become smooth functions of o. Our second
result states that for small o, these statistics (and in particular any misspecification
bias) are of order O(c?) for small ¢ when the non-separable component is drawn
from a distribution that is symmetric around zero.

Result 2: in large markets, if the distribution of v is symmetric around zero then
the effects of non-separability are in o for small o.

The proof of result 2 relies on the fact that in large markets, the empirical distribu-
tion of all draws of the v;; component converges to its generating distribution. If the
latter is symmetric, then changing all ov;; to (—o)v;; cannot affect the equilibrium
in the large market limit”. A fortiori, all statistics computed on the equilibrium must
be locally even functions of . The equilibrium matching is a smooth function of o
in the limit; therefore its difference with the equilibrium matching of the separable
model must be at most O(c?).

In general, adding a non-separable mean-zero term in a separable model is akin to
increasing the opportunities for successful matches. By making the market “thicker”,
it increases the probabilities of all kinds of matches: we expect (and our simulations
will confirm) pi11, f12, fio1, and pgs to be larger, and pu0, o1, f20 and 2 to be smaller,
than in the fully separable model. On the other hand, since we are adding random
terms that are distributed independently of partners’ observed types, there is no
obvious reason why the probabilities of non-diagonal matches (g2 and ps;) should

"We skip here over the normalizations that are needed to rescale the non-separable model as the
number of individuals grows without bounds—see Menzel (2015) for a thorough analysis.
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increase much differently than those of diagonal matches (p1; and pigs). In particular,

the log-odds-ratio
1 1122
og ——

Hi2ft21
may not be so different in non-separable models. In the Choo and Siow (2006)
specification that we use to estimate the parameters of the model, this ratio identifies
with the “supermodular core” defined in Chiappori, Salanié, and Weiss (2017), which
in this simple case is simply the double difference

Dy® = @1y + Py — Pip — Py
From this admittedly imprecise argument we derive the following conjecture:

Conjecture: mistakenly assuming separability generates “small” misspecification
biases on the estimated supermodular core Dy® of the joint surplus.

3.2.2 Monte Carlo Setup

To test our conjecture, we simulated average-size samples of individuals with varying
characteristics and matching preferences. Our simulation framework takes in 1,000
individuals, equally split between men and women®. We assign to each one of two
educational levels; we examine both symmetric and asymmetric margins. In the
symmetric case, there are 250 men and 250 women in each of the two groups (HS
and CG). The asymmetric scenario assumes a larger number of college educated
women (375) than men (125); conversely, it has a smaller number of high-school
educated women (125) than men (375).

Recall that we defined a “non-separability” R*. We calibrate our scenarii so that
this R? takes values of 0,0.2,0.4,0.6,0.8, and 1. This covers the range from the
fully separable Choo and Siow (2006) model to a “fully random” surplus (drawn
independently of the observed types). The intermediate cases represent a mildly
non-separable model (R* = 0.2,0.4) and a strongly non-separable one (R? = 0.6,0.8).

All of our simulations pre-impose a supermodular and symmetric systematic sur-
plus function ®. We distinguish two cases: “small modularity”, with

0.5 1.0
= <1.0 1.6)
and “large modularity”, where we use
0.5 1.0
= (1.0 2.5) '

8We will also report more briefly on a scaled-down population of 200 individuals.
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Note that the only difference lies in the surplus generated by a couple of college-
educated partners, which is larger in the latter case. As a consequence, the super-

modular core
Dy® = @ + Pgp — D1y — Py

equals 0.1 with small modularity and 1.0 with large modularity.

As a result of selecting two different specifications of modularity and two contrast-
ing population margins, we arrive at four distinct calibrations of the variance of the
systematic surplus ®. In the “large market” limit of the separable Choo and Siow
(2006) model when R? = 0, the estimate of the variance of ® in the case of small
modularity is about 0.357 with symmetric margins and roughly 0.336 with asymmet-
ric margins. In the case of large modularity, they are more than twice as high: about
0.856 with symmetric margins and roughly 0.716 with asymmetric margins.

To complete the description of our simulations, we need to describe the specifica-
tion of the £,7, and (for the non-fully separable cases R* > 0) also v. We choose to
draw all 52, n’, and v;; independently from the centered standard type I extreme value
distribution such that when R? = 0, this is just the Choo and Siow (2006) model;
scenarii with positive R? explore its robustness to deviations from separability.

For each simulation scenario, we generate 1,000 datasets. Table 1 summarizes the
simulation scenarii.

Population: 1,000 (Separable) R?=0
Draws: 1,000 (Non-Separable) R* =0.2,0.4,0.6,0.8,1
Modularity: Small or Large
Symmetric Margins Asymmetric Margins
Share of Share of
Count  Population Count Population
Men HS (z=1) 250 25% 375 37.5%
Men CG (z=2) 250 25% 125 12.5%
Women HS (y=1) 250 25% 125 12.5%
Women CG (y=2) 250 25% 375 37.5%

Table 1: Simulation Parameters

3.2.3 Monte Carlo Results

The combination of six values of R? symmetric or asymmetric populations, and
two modularity subcases generates 24 different scenarii. As going through all of our
results would quickly bore the reader, we focus on the most striking ones. Sometimes
we only show plots for the small modularity /symmetric margins case to save space.

12



With non-separable surplus, the only way we know of solving for the equilibrium
matching is to solve the linear programming problem associated with the primal
(maximizing the total surplus) or dual (minimizing the sum of utilities under the
stability constraints). We used the R interface of the free academic version of the
Gurobi software’ for this purpose. The algorithm converges very robustly. Even
with our relatively small populations of 1,000 individuals, each run requires several
gigabytes of memory. This stands in contrast with the separable case, for which very
efficient methods exist—most notably the IPFP algorithm of Galichon and Salanié
(2022).

The R* = 0 simulation serves as our benchmark, since in that case the model
is well-specified. Biases and inefficiencies introduced by the misspecifications for
R? > 0 will show up in a translation and a spreading out of the estimated density of
our estimators of the four elements of the & matrix, and of the supermodular core
Dy®.

Figures 1 and 2 plot the distributions of the estimated <i>xy for respectively (z,y) =
(1,1),(1,2),(2,1), and (2,2). As our discussion in section 3.2.1 suggested, the esti-
mators have a positive bias that grows with the extent of the non-separability. This
reflects the growing thickness of the market and the resulting higher probability of
finding a suitable partner. This is apparent in Figure 3: as the joint surplus becomes
more non-separable; each group gets better outcomes.

More interestingly, Figures 4 and 5 show that our estimate of the supermodulaar
core Dy® has very little bias, even when R? becomes as large as 0.6. Recall that for
this value of R?, the non-separable term v;; contributes half more variance than the
sum of the separable terms 6; and 7). This finding is important as we have known
since Becker (1973) that the supermodularity of the joint surplus drives the essential
properties of the matching. It points to a remarkable robustness of the Choo and
Siow (2006) estimator in the face of rather large deviations from separability.

Another important property of the matching equilibrium are its “equilibrium
prices”: how it shares the joint surplus between the two partners in any couple
that forms in equilibrium. Figures 6 and 7 show the distribution of the share that
goes to the man on average, that is

Uy

Uy + Vy

for all types of couples (depending whether either partner is college-educated). We
focus on the symmetric case, where the shares should be close to 0.5 when the
partners are equally educated. Both figures confirm this; again, the lack of bias in

9Gurobi (2019).
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the estimated surplus shares is striking, even with R? = 1 when the basic structure
of the Choo and Siow (2006) model vanishes.

With symmetric populations and supermodularity, one expects the couples in
which one partner is better-educated than the other to attribute a smaller share of
the surplus to the less-educated partner; and the difference should grow with the
supermodular core. Comparing Figures 6 and 7 shows that while men do almost
as well with x = 1,y = 2 as with x = 2,y = 1 when the modularity is small, the
difference becomes more noticeable with large modularity.

Since solving the linear programming problem is much more expensive than using
the IPFP algorithm proposed by Galichon and Salanié (2022), it is also interesting
to compare their performances in our simulation runs. While we already know that
IPFP is much faster (and uses very little memory), it is only rigorously valid in
the “large market” limit when the number of individuals goes to infinity. Figure 8
shows that even with our population size of 1,000, IPFP performs remarkably well:
it yields equilibrium matching probabilities p,, that are very close to the mode of
the distribution of the Gurobi results for the finite-population case.

We also ran a set of simulations with only 200 individuals. The results are basically
similar as with 1,000 individuals, with more variation across runs as expected.
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4 A Caveat on Imbalanced Data

The estimation of matching models, separable or not, is very sensitive to the presence
of large variation in cell sizes. To take a very bare-bones example, consider a Choo
and Siow model with X =Y = 2 observed types and suppose that we have no data
on singles: we only observe the proportion of marriages 0 < iz, < 1 in each cell
x,y = 1,2. Then we can only estimate the double difference

G0 = P11 + Pog — P12 — Doy
The maximum likelihood estimator of ¢q is simply

$ = 2log L1122
H12 21

It is easy to check that given a sample of n marriages, the asymptotic approximation

to its variance is
V&n:é(i+i+i+i)7
no\ M1 M2 M1 H22

where the p;; are the asymptotic limits of the equilibrium proportions. It is clear in
this form that since p11 + 12 + o1 + p122 = 1, the variance of the estimator is always
at least 16/n. To get an estimate of ¢y with a standard error of say 0.1, we need
1,600 marriages in the best of cases (that is, when ¢y = 0 so that all y;; equal 1/4.).
It it not hard to show that this bound also holds with X equally probable types on
each side (rather than just two)'".

Even more importantly, a larger dispersion in cell sizes increases the variance of
the estimator. In fact,
ng@n > 4 !

nmin(py, f12, f21, fo2)

the presence of any small cell will make the estimator imprecise.

It may not be so surprising, a posteriori, that estimating a multinomial two-
sided choice model requires fairly large samples; and we know that even in one-sided
models, small cells create problems for estimation. This difficulty is more salient
in matching models, as cells with small numbers of observations are often found in
the data. Marriage markets are a good illustration: e.g. Choo and Siow (2006) used
data with individuals ages 16 to 75, with non-zero cells clustered near the diagonal.

9To be precise, the variance is 4/(nDo(1 — Dy)), where Dy is the proportion of marriages with
T =y.
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Galichon and Salanié (2024a, Section 5.1) is a first stab at some possible strategies to
deal with zero cells. Non-zero but small cells may be easier to deal with: they could
be trimmed out of the data, cautiously inflated, or weighted down in the estimation.
This is an important topic that clearly requires more work.

Concluding Remarks

This paper provides a balanced assessment of the empirical strengths and limitations
of separable matching models. Our theoretical arguments and our Monte Carlo sim-
ulations suggest (cautiously) that omitted variables and omitted non-separabilities
induce misspecification biases that do not seem to be severe. Estimating a sepa-
rable, Choo and Siow (2006) model on data that may have been generated by a
non-separable model (or a separable model with some unobserved variables) does
little apparent harm to our ability to get reliable estimates of the most economically
important statistics: the supermodular core and the surplus shares.

Our main caveat is that when the data contain cells that vary widely in size,
estimators are likely to be very imprecise. It may in fact be best to exclude some
small cells from the estimation, to inflate their size, or to smooth cell sizes in some
way. As such data are a common occurrence, more work is needed to explore which
of these strategies are most useful.
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