example_nestedlogit
module¶
example using a simple two-layer nested logit model One nest on each side must consist of the 0 option. The other nests are specified as nested lists. E.g. [[1, 3], [2,4]] describes two nests, one with types 1 and 3, and the other with types 2 and 4. On each side, the nests are the same for each type, with the same parameters.
create_nestedlogit_population(X, Y, K, std_alphas=0.5, std_betas=1.0)
¶
we simulate a nested logit population with equal numbers of men and women of each type and random bases dunctions and coefficients
1 2 3 4 5 6 7 8 9 10 11 |
|
Source code in cupid_matching/example_nested_logit.py
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
|
mde_estimate(mus_sim, phi_bases, true_coeffs, entropy, title)
¶
we estimate the parameters using the minimum distance estimator
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mus_sim |
Matching
|
a Choo and Siow Matching |
required |
phi_bases |
np.ndarray
|
the basis functions |
required |
true_coeffs |
np.ndarray
|
their true coefficients and the nesting parameters |
required |
entropy |
EntropyFunctions
|
the entropy functions we use |
required |
title |
str
|
the name of the estimator |
required |
Returns:
Type | Description |
---|---|
float
|
the largest absolute difference between the true and estimated coefficients |
Source code in cupid_matching/example_nested_logit.py
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
|