example_choosiow
module¶
example using the Choo and Siow homoskedastic model
create_choosiow_population(X, Y, K, std_betas)
¶
we simulate a Choo and Siow population with equal numbers of men and women of each type and random bases functions and coefficients
1 2 3 4 5 6 7 8 9 |
|
Source code in cupid_matching/example_choo_siow.py
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
|
demo_choo_siow(n_households, X, Y, K, std_betas=1.0)
¶
run four MDE estimators and the Poisson estimator on randomly generated data
Parameters:
Name | Type | Description | Default |
---|---|---|---|
n_households |
int
|
number of households |
required |
X |
int
|
number of types of men |
required |
Y |
int
|
number of types of women |
required |
K |
int
|
number of basis functions |
required |
std_betas |
float
|
the standard errors of their coefficients |
1.0
|
Returns:
Type | Description |
---|---|
tuple[float, float, float, float, float]
|
the discrepancies of the five estimators |
Source code in cupid_matching/example_choo_siow.py
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
|
mde_estimate(mus_sim, phi_bases, betas_true, entropy, no_singles=False, title=None, verbose=False)
¶
we estimate the parameters using the minimum distance estimator
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mus_sim |
Matching
|
a Choo and Siow Matching |
required |
phi_bases |
np.ndarray
|
the basis functions |
required |
betas_true |
np.ndarray
|
their true coefficients |
required |
entropy |
EntropyFunctions
|
the entropy functions we use |
required |
no_singles |
bool
|
if |
False
|
title |
str | None
|
the name of the estimator |
None
|
Returns:
Type | Description |
---|---|
float
|
the largest absolute difference between the true and estimated coefficients |
Source code in cupid_matching/example_choo_siow.py
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
|