Skip to content

choo_siow_heteroskedastic module

The components of the derivative of the entropy for the Choo and Siow fully heteroskedastic model.

We normalize the standard error for X=1 at 1, and we estimate the standard errors for all other types on the X side and for all types on the Y side.

e0_choo_siow_heteroskedastic(muhat, additional_parameters=None)

Returns the values of the parameter-independent part \(e_0\) for the Choo and Siow heteroskedastic model; we normalized \(\sigma_1=1\)

Parameters:

Name Type Description Default
muhat Matching

a Matching

required

Returns:

Type Description
np.ndarray

the (X,Y) matrix of the parameter-independent part

np.ndarray

of the first derivative of the entropy

Source code in cupid_matching/choo_siow_heteroskedastic.py
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
def e0_choo_siow_heteroskedastic(
    muhat: Matching, additional_parameters: list | None = None
) -> np.ndarray:
    """Returns the values of the parameter-independent part $e_0$
    for the Choo and Siow heteroskedastic model;
    we normalized $\\sigma_1=1$

    Args:
        muhat: a Matching

    Returns:
        the (X,Y) matrix of the parameter-independent part
        of the first derivative of the entropy
    """
    muxy, mux0, *_ = muhat.unpack()
    mu1y = muxy[0, :]
    mu10 = mux0[0]
    e0_vals = np.zeros_like(muxy)
    e0_vals[0, :] = -np.log(mu1y / mu10)
    return cast(np.ndarray, e0_vals)

e0_derivative_mu_heteroskedastic(muhat, additional_parameters=None)

Returns the derivatives of the parameter-independent part \(e_0\) wrt \(\mu\) for the Choo and Siow heteroskedastic model; we normalized \(\sigma_1=1\)

Parameters:

Name Type Description Default
muhat Matching

a Matching

required

Returns:

Type Description
ThreeArrays

the parameter-independent part of the hessian of the entropy

ThreeArrays

wrt \((\mu, \mu)\).

Source code in cupid_matching/choo_siow_heteroskedastic.py
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
def e0_derivative_mu_heteroskedastic(
    muhat: Matching, additional_parameters: list | None = None
) -> ThreeArrays:
    """Returns the derivatives of the parameter-independent part $e_0$
    wrt $\\mu$ for the Choo and Siow heteroskedastic model;
    we normalized $\\sigma_1=1$

    Args:
        muhat: a Matching

    Returns:
        the parameter-independent part of the hessian of the entropy
        wrt $(\\mu, \\mu)$.
    """
    muxy, mux0, *_ = muhat.unpack()
    X, Y = muxy.shape
    mu1y = muxy[0, :]
    mu10 = mux0[0]
    hess_x = np.zeros((X, Y, Y))
    hess_y = np.zeros((X, Y, X))
    hess_xy = np.zeros((X, Y))
    der_log1y = 1.0 / mu1y
    der_log10 = 1.0 / mu10
    for y in range(Y):
        hess_x[0, y, :] = -der_log10
        hess_xy[0, y] = -der_log1y[y] - der_log10
    return hess_x, hess_y, hess_xy

e0_derivative_r_heteroskedastic(muhat, additional_parameters=None)

Returns the derivatives of the parameter-independent part \(e_0\) wrt \(r\) for the Choo and Siow heteroskedastic model; we normalized \(\sigma_1=1\)

Parameters:

Name Type Description Default
muhat Matching

a Matching

required

Returns:

Type Description
TwoArrays

the parameter-independent part of the hessian of the entropy

TwoArrays

wrt \((\mu,r)\).

Source code in cupid_matching/choo_siow_heteroskedastic.py
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
def e0_derivative_r_heteroskedastic(
    muhat: Matching, additional_parameters: list | None = None
) -> TwoArrays:
    """Returns the derivatives of the parameter-independent part $e_0$
    wrt $r$ for the Choo and Siow heteroskedastic model;
    we normalized $\\sigma_1=1$

    Args:
        muhat: a Matching

    Returns:
        the parameter-independent part of the hessian of the entropy
        wrt $(\\mu,r)$.
    """
    muxy, mux0, *_ = muhat.unpack()
    X, Y = muxy.shape
    mu10 = mux0[0]
    hess_n = np.zeros((X, Y))
    hess_m = np.zeros((X, Y))
    der_log10 = 1.0 / mu10
    for y in range(Y):
        hess_n[0, y] = der_log10
    return hess_n, hess_m

e_choo_siow_heteroskedastic(muhat, additional_parameters=None)

Returns the values of the parameter-dependent part \(e\) for the Choo and Siow heteroskedastic model; we normalized \(\sigma_1=1\)

Parameters:

Name Type Description Default
muhat Matching

a Matching

required

Returns:

Type Description
np.ndarray

the (X,Y,X+Y-1) parameter-dependent part of the hessian of the entropy.

Source code in cupid_matching/choo_siow_heteroskedastic.py
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
def e_choo_siow_heteroskedastic(
    muhat: Matching, additional_parameters: list | None = None
) -> np.ndarray:
    """Returns the values of the parameter-dependent part  $e$
    for the Choo and Siow heteroskedastic model;
    we normalized $\\sigma_1=1$

    Args:
        muhat: a Matching

    Returns:
        the (X,Y,X+Y-1) parameter-dependent part of the hessian of the entropy.
    """
    muxy, mux0, mu0y, *_ = muhat.unpack()
    X, Y = muxy.shape
    n_alpha = X + Y - 1

    e_vals = np.zeros((X, Y, n_alpha))
    i = 0
    for x in range(1, X):
        e_vals[x, :, i] = -np.log(muxy[x, :] / mux0[x])
        i += 1
    for y in range(Y):
        e_vals[:, y, i] = -np.log(muxy[:, y] / mu0y[y])
        i += 1

    return e_vals

e_derivative_mu_heteroskedastic(muhat, additional_parameters=None)

Returns the derivatives of the parameter-dependent part \(e\) wrt \(\mu\) for the Choo and Siow heteroskedastic model; we normalized \(\sigma_1=1\)

Parameters:

Name Type Description Default
muhat Matching

a Matching

required

Returns:

Type Description
ThreeArrays

the parameter-dependent part of the hessian of the entropy

ThreeArrays

wrt \((\mu,\mu)\).

Source code in cupid_matching/choo_siow_heteroskedastic.py
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
def e_derivative_mu_heteroskedastic(
    muhat: Matching, additional_parameters: list | None = None
) -> ThreeArrays:
    """Returns the derivatives of the parameter-dependent part $e$
    wrt $\\mu$ for the Choo and Siow heteroskedastic model;
    we normalized $\\sigma_1=1$

    Args:
        muhat: a Matching

    Returns:
        the parameter-dependent part of the hessian of the entropy
        wrt $(\\mu,\\mu)$.
    """
    muxy, mux0, mu0y, *_ = muhat.unpack()
    X, Y = muxy.shape
    n_alpha = X + Y - 1
    hess_x = np.zeros((X, Y, Y, n_alpha))
    hess_y = np.zeros((X, Y, X, n_alpha))
    hess_xy = np.zeros((X, Y, n_alpha))

    der_logxy = 1.0 / muxy
    der_logx0 = 1.0 / mux0
    der_log0y = 1.0 / mu0y
    i = 0
    for x in range(1, X):
        # derivatives wrt sigma_x
        dlogx0 = der_logx0[x]
        dlogxy = der_logxy[x, :]
        for y in range(Y):
            hess_x[x, y, :, i] = -dlogx0
            hess_xy[x, y, i] = -dlogxy[y] - dlogx0
        i += 1
    for y in range(Y):
        # derivatives wrt tau_y
        dlog0y = der_log0y[y]
        dlogxy = der_logxy[:, y]
        for x in range(X):
            hess_y[x, y, :, i] = -dlog0y
            hess_xy[x, y, i] = -dlogxy[x] - dlog0y
        i += 1

    return hess_x, hess_y, hess_xy

e_derivative_r_heteroskedastic(muhat, additional_parameters=None)

Returns the derivatives of the parameter-dependent part \(e\) wrt \(r\) for the Choo and Siow heteroskedastic model; we normalized \(\sigma_1=1\)

Parameters:

Name Type Description Default
muhat Matching

a Matching

required

Returns:

Type Description
TwoArrays

the parameter-dependent part of the hessian of the entropy

TwoArrays

wrt \(r\).

Source code in cupid_matching/choo_siow_heteroskedastic.py
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
def e_derivative_r_heteroskedastic(
    muhat: Matching, additional_parameters: list | None = None
) -> TwoArrays:
    """Returns the derivatives of the parameter-dependent part $e$
    wrt $r$ for the Choo and Siow heteroskedastic model;
    we normalized $\\sigma_1=1$

    Args:
        muhat: a Matching

    Returns:
        the parameter-dependent part of the hessian of the entropy
        wrt $r$.
    """
    muxy, mux0, mu0y, *_ = muhat.unpack()
    X, Y = muxy.shape
    n_alpha = X + Y - 1
    hess_n = np.zeros((X, Y, n_alpha))
    hess_m = np.zeros((X, Y, n_alpha))

    der_logx0 = 1.0 / mux0
    der_log0y = 1.0 / mu0y
    i = 0
    for x in range(1, X):
        # derivatives wrt sigma_x
        dlogx0 = der_logx0[x]
        for y in range(Y):
            hess_n[x, y, i] = dlogx0
        i += 1
    for y in range(Y):
        # derivatives wrt tau_y
        dlog0y = der_log0y[y]
        for x in range(X):
            hess_m[x, y, i] = dlog0y
        i += 1

    return hess_n, hess_m