Skip to content

choo_siow module

The components of the derivative of the entropy for the Choo and Siow homoskedastic model.

e0_fun_choo_siow(muhat, additional_parameters=None)

Returns the values of \(e_0\) for the Choo and Siow model.

Parameters:

Name Type Description Default
muhat Matching

a Matching

required

Returns:

Type Description
np.ndarray

the (X,Y) matrix of the first derivative of the entropy

Source code in cupid_matching/choo_siow.py
140
141
142
143
144
145
146
147
148
149
150
151
152
153
def e0_fun_choo_siow(
    muhat: Matching, additional_parameters: list | None = None
) -> np.ndarray:
    """Returns the values of $e_0$ for the Choo and Siow model.

    Args:
        muhat: a Matching

    Returns:
        the (X,Y) matrix of the first derivative of the entropy
    """
    check_additional_parameters(0, additional_parameters)
    entropy_res = cast(tuple[float, np.ndarray], _entropy_choo_siow(muhat, deriv=1))
    return cast(np.ndarray, entropy_res[1])

e0_fun_choo_siow_corrected(muhat, additional_parameters=None)

Returns the values of \(e_0\) for the Choo and Siow model, using the finite-sample correction log(p+(1-p)/(2N))

Parameters:

Name Type Description Default
muhat Matching

a Matching

required

Returns:

Type Description
np.ndarray

the (X,Y) matrix of the first derivative of the entropy

Source code in cupid_matching/choo_siow.py
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
def e0_fun_choo_siow_corrected(
    muhat: Matching, additional_parameters: list | None = None
) -> np.ndarray:
    """Returns the values of $e_0$ for the Choo and Siow model,
    using the finite-sample correction log(p+(1-p)/(2N))

    Args:
        muhat: a Matching

    Returns:
        the (X,Y) matrix of the first derivative of the entropy
    """
    check_additional_parameters(0, additional_parameters)
    e0_val_corrected = _der_entropy_choo_siow_corrected(muhat, hessian=False)
    return e0_val_corrected

hessian_mumu_choo_siow(muhat, additional_parameters=None)

Returns the derivatives of \(e_0\) in \(\mu\) for the Choo and Siow model.

Parameters:

Name Type Description Default
muhat Matching

a Matching

required

Returns:

Type Description
ThreeArrays

the three components of the hessian wrt \((\mu,\mu)\) of the entropy

Source code in cupid_matching/choo_siow.py
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
def hessian_mumu_choo_siow(
    muhat: Matching, additional_parameters: list | None = None
) -> ThreeArrays:
    """Returns the derivatives of $e_0$ in $\\mu$
    for the Choo and Siow model.

    Args:
        muhat: a Matching

    Returns:
        the three components of the hessian wrt $(\\mu,\\mu)$ of the entropy
    """
    check_additional_parameters(0, additional_parameters)
    entropy_res = cast(
        tuple[float, np.ndarray, np.ndarray, np.ndarray],
        _entropy_choo_siow(muhat, deriv=2),
    )
    hessmumu = entropy_res[2]
    muxy, *_ = muhat.unpack()
    X, Y = muxy.shape
    hess_x = np.zeros((X, Y, Y))
    hess_y = np.zeros((X, Y, X))
    hess_xy = np.zeros((X, Y))
    for x in range(X):
        for y in range(Y):
            d2xy = hessmumu[x, y, :, :]
            hess_x[x, y, :] = d2xy[x, :]
            hess_y[x, y, :] = d2xy[:, y]
            hess_xy[x, y] = d2xy[x, y]
    return hess_x, hess_y, hess_xy

hessian_mumu_choo_siow_corrected(muhat, additional_parameters=None)

Returns the derivatives of \(e_0\) in \(\mu\) for the Choo and Siow model, with the small sample correction

Parameters:

Name Type Description Default
muhat Matching

a Matching

required

Returns:

Type Description
ThreeArrays

the three components of the hessian wrt \((\mu,\mu)\) of the entropy

Source code in cupid_matching/choo_siow.py
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
def hessian_mumu_choo_siow_corrected(
    muhat: Matching, additional_parameters: list | None = None
) -> ThreeArrays:
    """Returns the derivatives of $e_0$ in $\\mu$
    for the Choo and Siow model, with the small sample correction

    Args:
        muhat: a Matching

    Returns:
        the three components of the hessian wrt $(\\mu,\\mu)$ of the entropy
    """
    check_additional_parameters(0, additional_parameters)
    _, hessmumu, _ = _der_entropy_choo_siow_corrected(muhat, hessian=True)
    muxy, *_ = muhat.unpack()
    X, Y = muxy.shape
    hess_x = np.zeros((X, Y, Y))
    hess_y = np.zeros((X, Y, X))
    hess_xy = np.zeros((X, Y))
    for x in range(X):
        for y in range(Y):
            d2xy = hessmumu[x, y, :, :]
            hess_x[x, y, :] = d2xy[x, :]
            hess_y[x, y, :] = d2xy[:, y]
            hess_xy[x, y] = d2xy[x, y]
    return hess_x, hess_y, hess_xy

hessian_mur_choo_siow(muhat, additional_parameters=None)

Returns the derivatives of \(e_0\) in \(r\) for the Choo and Siow model.

Parameters:

Name Type Description Default
muhat Matching

a Matching

required

Returns:

Type Description
TwoArrays

the two components of the hessian wrt \((\mu,r)\) of the entropy

Source code in cupid_matching/choo_siow.py
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
def hessian_mur_choo_siow(
    muhat: Matching, additional_parameters: list | None = None
) -> TwoArrays:
    """Returns the derivatives of $e_0$ in $r$
    for the Choo and Siow model.

    Args:
        muhat: a Matching

    Returns:
        the two components of the hessian wrt $(\\mu,r)$ of the entropy
    """
    check_additional_parameters(0, additional_parameters)
    entropy_res = cast(
        tuple[float, np.ndarray, np.ndarray, np.ndarray],
        _entropy_choo_siow(muhat, deriv=2),
    )
    hessmur = entropy_res[3]
    muxy, *_ = muhat.unpack()
    X, Y = muxy.shape
    hess_nx = np.zeros((X, Y))
    hess_my = np.zeros((X, Y))
    for x in range(X):
        for y in range(Y):
            d2r = hessmur[x, y, :]
            hess_nx[x, y] = d2r[x]
            hess_my[x, y] = d2r[X + y]
    return hess_nx, hess_my

hessian_mur_choo_siow_corrected(muhat, additional_parameters=None)

Returns the derivatives of \(e_0\) in \(r\) for the Choo and Siow model, with the small sample correction

Parameters:

Name Type Description Default
muhat Matching

a Matching

required

Returns:

Type Description
TwoArrays

the two components of the hessian wrt \((\mu,r)\) of the entropy

Source code in cupid_matching/choo_siow.py
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
def hessian_mur_choo_siow_corrected(
    muhat: Matching, additional_parameters: list | None = None
) -> TwoArrays:
    """Returns the derivatives of $e_0$ in $r$
    for the Choo and Siow model, with the small sample correction

    Args:
        muhat: a Matching

    Returns:
        the two components of the hessian wrt $(\\mu,r)$ of the entropy
    """
    check_additional_parameters(0, additional_parameters)
    _, _, hessmur = _der_entropy_choo_siow_corrected(muhat, hessian=True)
    muxy, *_ = muhat.unpack()
    X, Y = muxy.shape
    hess_nx = np.zeros((X, Y))
    hess_my = np.zeros((X, Y))
    for x in range(X):
        for y in range(Y):
            d2r = hessmur[x, y, :]
            hess_nx[x, y] = d2r[x]
            hess_my[x, y] = d2r[X + y]
    return hess_nx, hess_my